Have a personal or library account? Click to login
AB Initio Calculations of CUN@Graphene (0001) Nanostructures for Electrocatalytic Applications Cover

AB Initio Calculations of CUN@Graphene (0001) Nanostructures for Electrocatalytic Applications

Open Access
|Jan 2019

References

  1. 1. Kuhl, K. P., Cave, E. R., Abram, D. N., & Jaramillo, T. F. (2012). New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci., 5, 7050–7059.10.1039/c2ee21234j
  2. 2. Zhang, Y.-J., Sethuraman, V., Michalsky, R., & Pereson, A. A. (2014). Competition between CO reduction and H evolution on transition-metal electrocatalysts. ACS Catal., 4, 3742–3748.10.1021/cs5012298
  3. 3. Reske, R., Mistry, H., Behafarid, F., Cuenya, B. R., Strasser, P. (2014). Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles. J. Am. Chem. Soc., 136, 6978–6986.10.1021/ja500328k24746172
  4. 4. Zhu, W. Zhang, Y.-J., Zhang, H., Lv, H., Li, Q., Michalsky, R., Peterson, A. A., & Sun, S. (2014). Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc., 136, 16132–16135.10.1021/ja509509925380393
  5. 5. Mistry, H., Varela, A. S., Kuehl, S., Strasser, P., & Cuenya, B. R. (2016). Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater., 1, 16009.10.1038/natrevmats.2016.9
  6. 6. Ren, D., Deng, Y., Handoko, A. D., Chen, C. S., Malkhandi, S., & Yeo, B. S. (2015). Selective electrochemical reduction of carbon dioxide to ethylene and ethanol on copper (I) oxide catalysts. ACS Catal., 5, 2814–2821.10.1021/cs502128q
  7. 7. Mistry, H., Varela A. S., Bonifacio C. S., Zegkinoglou,I., Sinev, I., Choi, Y.-W., … Cuenya, B. R. (2016). Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun., 7, 12123.10.1038/ncomms12123493149727356485
  8. 8. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car., R., Cavazzoni, C., … Wentzcovitch, M. (2017). QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matt., 29, 465901.
  9. 9. Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868.10.1103/PhysRevLett.77.386510062328
  10. 10. Kresse, G. J., & Jouber, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758–1775.10.1103/PhysRevB.59.1758
  11. 11. Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188–5192.10.1103/PhysRevB.13.5188
  12. 12. Otani, M., & Sugino, O. (2006). First-principles calculations of charged surfaces and interfaces: A plane-wave nonrepeated slab approach. Phys. Rev. B, 73, 115407.10.1103/PhysRevB.73.115407
DOI: https://doi.org/10.2478/lpts-2018-0041 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 30 - 34
Published on: Jan 25, 2019
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2019 S. Piskunov, Y. F. Zhukovskii, M. N. Sokolov, J. Kleperis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.