3. Rahmel, A., & Spencer, P.J. (1991). Thermodynamic aspects of TiAl and TiSi2 oxidation: The Al–Ti–O and Si–Ti–O phase diagrams. Oxid. Met. 35(1/2), 53–68.10.1007/BF00666500
5. Maurice, V., Despert, G., Zanna S., Josso, P., Bacos M.-P., & Marcus. P. (2007). XPS study of the initial stages of oxidation of α2-Ti3Al and γ-TiAl intermetallic alloys. Acta Mater., 55, 3315–3325. DOI: 10.1016/j.actamat.2007.01.03010.1016/j.actamat.2007.01.030
6. Umakoshi, Y., Yamaguchi, M., Sakagami, T., & Yamane, T. (1989). Oxidation resistance of intermetallic compounds Al3Ti and TiAl. J. Mater. Sci., 24, 1599–1603.10.1007/BF01105677
14. Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15–50. DOI: 10.1016/0927-0256(96)00008-010.1016/0927-0256(96)00008-0
16. Henkelman, G., Uberuaga, B.P., & Jónsson, H. (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys., 113(22), 9901–9904. DOI: 10.1063/1.132967210.1063/1.1329672
17. Wei, Y., Zhou, H.B., Zhang, Y., Lu, G.-H., & Xu, H. (2011). Effects of O in a binary-phase TiAl–Ti3Al alloy: From site occupancy to interfacial energetics. J. Phys.: Condens. Matter., 23(22), 225504. DOI: 10.1088/0953-8984/23/22/22550410.1088/0953-8984/23/22/225504
18. Bakulin, A.V., Kulkova, S.E., Hu, Q.M., & Yang, R. (2015). Theoretical study of oxygen sorption and diffusion in the volume and on the surface of a γ-TiAl alloy. J. Exp. Theor. Phys., 120(2), 257–267. DOI: 10.1134/S106377611502009010.1134/S1063776115020090
23. Bertin, Y.A., Parisot, J., & Gacougnolle, J.L. (1980). Modèle atomique de diffusion de l’oxygène dans le titane α*. J. Less-Common Met., 69, 121–138.10.1016/0022-5088(80)90049-1