2. Spagni, A., Berardo, A., Marchetto, D., Gualtieri, E., Pugno, N.M., & Valeri, S. (2016). Friction of rough surfaces on ice: Experiments and modeling. Wear, 368–369, 258–266. doi:10.1016/j.wear.2016.10.00110.1016/j.wear.2016.10.001
5. Rohm, S., Hasler, M., Knoflach, C., van Putten, J., Unterberger, S.H., Schindelwig, K. …Nachbauer, W. (2015). Friction between steel and snow in dependence of the steel roughness. Tribol. Lett., 59, 27. doi:10.1007/s11249-015-0554-x10.1007/s11249-015-0554-x
6. Scherge, M., Böttcher, R., Spagni, A., & Marchetto, D. (2018). High-speed measurements of steel–ice friction: Experiment vs. calculation. Lubricants, 6, 26. doi:10.3390/lubricants601002610.3390/lubricants6010026
7. Lungevics, J., Jansons, E., & Gross, K.A. (2018). An ice track equipped with optical sensors for determining the influence of experimental conditions on the sliding velocity. Latv. J. Phys. Tech. Sci., 55, 64–75. doi:10.2478/LPTS-2018-000710.2478/LPTS-2018-0007
8. Jansons, E., Lungevics, J., Stiprais, K., Pluduma, L., & Gross, K.A. (2018). Measurement of sliding velocity on ice, as a function of temperature, runner load and roughness, in a skeleton push-start facility. Cold Reg. Sci. Technol., 151, 260–266. doi:10.1016/J.COLDREGIONS.2018.03.01510.1016/j.coldregions.2018.03.015
9. Kietzig, A.-M., Hatzikiriakos, S.G., & Englezos, P. (2009). Ice friction: The effects of surface roughness, structure, and hydrophobicity. J. Appl. Phys., 106, 24303. doi:10.1063/1.317334610.1063/1.3173346