4. de Pedro, B., Parrondo, J., Meskell, C., & Oro, J. F. (2016). CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or fluidelastic instability. Journal of Fluids and Structures, 64, 67–86. DOI: 10.1016/j.jfluidstructs.2016.04.00610.1016/j.jfluidstructs.2016.04.006
5. Charreton, C., Béguin, C., Yu, K.R., & Étienne, S. (2015). Effect of Reynolds number on the stability of a single flexible tube predicted by the quasi-steady model in tube bundles. Journal of Fluids and Structures, 56, 107–123. DOI: 10.1016/j.jfluidstructs.2015.05.00410.1016/j.jfluidstructs.2015.05.004
6. Mahon, J., & Meskell. C. (2013). Estimation of the time delay associated with damping controlled fluidelastic instability in a normal triangular tube array. Journal of Pressure Vessel Technology, 135, 030903-1-7. DOI: 10.1115/1.402414410.1115/1.4024144
7. Price, S.J. (1995). A review of theoretical models for fluidelastic instability of cylinder arrays in cross-flow. Journal of Fluids and Structures, 9, 463–518. DOI: 10.1006/jfls.1995.102810.1006/jfls.1995.1028
8. Andjelić, M., Austermann, R., & Popp, K. (1992). Multiple stability boundaries of tubes in a normal triangular cylinder array. Journal of Pressure Vessel Technology, 114, 336–343. DOI: 10.1115/1.292904910.1115/1.2929049
9. Khalvatti, A., Mureithi, N.W., & Pettigrew, M.J. (2010). Effect of preferential flexibility direction on fluidelastic instability of a rotated triangular tube bundle. Journal of Pressure Vessel Technology, 132, 041309-1-14. DOI: 10.1115/1.400218110.1115/1.4002181
10. Hassan, M., Gerber, A., & Omar, H. (2010). Numerical estimation of fluidelastic instability in tube arrays. Journal of Pressure Vessel Technology, 132, 041307-1-11. DOI: 10.1115/1.400211210.1115/1.4002112
14. Kim, S.N., & Jung, S.Y. (2000). Critical velocity of fluidelastic vibration in a nuclear fuel bundle. Korean Society of Mechanical Engineers International Journal, 14(8), 816–822.10.1007/BF03184468
15. Weaver, D.S., & El-Kashlan, M. (1981). On the number of tube rows required to study cross-flow induced vibrations in tube banks. Journal of Sound and Vibration, 75(2), 265–273. DOI: 10.1016/0022-460X(81)90344-8.10.1016/0022-460X(81)90344-8
16. Upnere, S., Jekabsons, N., & Dementjevs, S. (2016). Analysis of cross-flow induced vibrations in staggered arrangement of multi-cylinder system. In 5th European Seminar on Computing, 5–10 June 2016 (pp. 225). Pilsen, Czech Republic.