1. Cook, T., Dogutan, D., Reece, S., Surendranath, Y., Teets, T., & Nocera, D. (2010). Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical Reviews, 110(11), 6474–6502.10.1021/cr100246c21062098
2. Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysis, 2(8), 1765–1772.10.1021/cs3003098
3. Zasada, F., Piskorz, W., Cristol, S., Paul, J.-F., Kotarba, A., & Sojka, Z. (2010). Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: Molecular interpretation of water adsorption equilibria. The Journal of Physical Chemistry C, 114(50), 22245–22253.10.1021/jp109264b
4. Chen, J., & Selloni, A. (2012). Water adsorption and oxidation at the Co3O4 (110) surface. The Journal of Physical Chemistry Letters, 3(19), 2808–2814.10.1021/jz300994e
5. Liao, P., Keith, J., & Carter, E. (2012). Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. Journal of the American Chemical Society, 134(32), 13296–13309.10.1021/ja301567f22788792
6. Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., & Inoue, M. (2007). Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen. Catalysis Today, 120(2), 145–150.10.1016/j.cattod.2006.07.042
7. García-Mota, M., Vojvodic, A., Metiu, H., Man, I., Su, H.-Y., Rossmeisl, J., & Nørskov, J. (2011). Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem, 3(10), 1607–1611.10.1002/cctc.201100160
8. Kaptagay, G., Inerbaev, T., Mastrikov, Y., Kotomin, E., & Akilbekov, A. (2015). Water interaction with perfect and fluorine-doped Co3O4 (100) surface. Solid State Ionics, 277, 77–82.10.1016/j.ssi.2015.03.012
10. Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138.10.1103/PhysRev.140.A1133
11. Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186.10.1103/PhysRevB.54.111699984901
15. Brillouin, L. (1930). Les électrons libres dans les métaux et le role des réflexions de Bragg. Journal de Physique et le Radium, 1(11), 377–400.10.1051/jphysrad:01930001011037700
18. Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354–360.10.1016/j.commatsci.2005.04.010
19. Yu, M., & Trinkle, D. (2011). Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 134(6), 064111.10.1063/1.355371621322665