Have a personal or library account? Click to login
First-Principles Modelling of N-Doped Co3O4 Cover
Open Access
|Nov 2018

References

  1. 1. Cook, T., Dogutan, D., Reece, S., Surendranath, Y., Teets, T., & Nocera, D. (2010). Solar energy supply and storage for the legacy and nonlegacy worlds. Chemical Reviews, 110(11), 6474–6502.10.1021/cr100246c21062098
  2. 2. Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catalysis, 2(8), 1765–1772.10.1021/cs3003098
  3. 3. Zasada, F., Piskorz, W., Cristol, S., Paul, J.-F., Kotarba, A., & Sojka, Z. (2010). Periodic density functional theory and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: Molecular interpretation of water adsorption equilibria. The Journal of Physical Chemistry C, 114(50), 22245–22253.10.1021/jp109264b
  4. 4. Chen, J., & Selloni, A. (2012). Water adsorption and oxidation at the Co3O4 (110) surface. The Journal of Physical Chemistry Letters, 3(19), 2808–2814.10.1021/jz300994e
  5. 5. Liao, P., Keith, J., & Carter, E. (2012). Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. Journal of the American Chemical Society, 134(32), 13296–13309.10.1021/ja301567f22788792
  6. 6. Ohnishi, C., Asano, K., Iwamoto, S., Chikama, K., & Inoue, M. (2007). Alkali-doped Co3O4 catalysts for direct decomposition of N2O in the presence of oxygen. Catalysis Today, 120(2), 145–150.10.1016/j.cattod.2006.07.042
  7. 7. García-Mota, M., Vojvodic, A., Metiu, H., Man, I., Su, H.-Y., Rossmeisl, J., & Nørskov, J. (2011). Tailoring the activity for oxygen evolution electrocatalysis on rutile TiO2(110) by transition-metal substitution. ChemCatChem, 3(10), 1607–1611.10.1002/cctc.201100160
  8. 8. Kaptagay, G., Inerbaev, T., Mastrikov, Y., Kotomin, E., & Akilbekov, A. (2015). Water interaction with perfect and fluorine-doped Co3O4 (100) surface. Solid State Ionics, 277, 77–82.10.1016/j.ssi.2015.03.012
  9. 9. Xu, L., Wang, Z., Wang, J., Xiao, Z., Huang, X., Liu, Z., & Wang, S. (2017). N-doped nanoporous Co3O4 nanosheets with oxygen vacancies as oxygen evolving electrocatalysts. Nanotechnology, 28(16), 165402.10.1088/1361-6528/aa638128319036
  10. 10. Kohn, W., & Sham, L. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138.10.1103/PhysRev.140.A1133
  11. 11. Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169–11186.10.1103/PhysRevB.54.111699984901
  12. 12. Blöchl, P. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953–17979.10.1103/PhysRevB.50.179539976227
  13. 13. Perdew, J., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868.10.1103/PhysRevLett.77.386510062328
  14. 14. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C., & Sutton, A. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 57(3), 1505–1509.10.1103/PhysRevB.57.1505
  15. 15. Brillouin, L. (1930). Les électrons libres dans les métaux et le role des réflexions de Bragg. Journal de Physique et le Radium, 1(11), 377–400.10.1051/jphysrad:01930001011037700
  16. 16. Monkhorst, H., & Pack, J. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188–5192.10.1103/PhysRevB.13.5188
  17. 17. R. F. Bader, R. F. (1990). Atoms in Molecules: A Quantum Theory. Oxford University Press, Oxford.10.1093/oso/9780198551683.001.0001
  18. 18. Henkelman, G., Arnaldsson, A., & Jónsson, H. (2006). A fast and robust algorithm for Bader decomposition of charge density. Computational Materials Science, 36(3), 354–360.10.1016/j.commatsci.2005.04.010
  19. 19. Yu, M., & Trinkle, D. (2011). Accurate and efficient algorithm for Bader charge integration. The Journal of Chemical Physics, 134(6), 064111.10.1063/1.355371621322665
  20. 20. Villars Pierre and Cenzual, K. (Ed.). (n.d.). Co3O4 Crystal Structure: Datasheet from “PAULING FILE Multinaries Edition – 2012” in SpringerMaterials Available at https://materials.springer.com/isp/crystallographic/docs/sd_0311005
  21. 21. Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS). Switzerland & National Institute for Materials Science (NIMS), Japan.
DOI: https://doi.org/10.2478/lpts-2018-0034 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 36 - 42
Published on: Nov 30, 2018
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 G.A. Kaptagay, Yu.A. Mastrikov, E.A. Kotomin, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.