4. Dychko, A., Opolinskyi, I., & Yevtieieva, L. (2015). The intensification of the process of transformation of biomass into biogas. Managing the Development of Complex Systems, 22(1), 193–198.
6. Kushchev, L.A., Suslov, D.Yu., & Alifanova, A.I. (2014). Theoretical aspects of the process of obtaining biogas during anaerobic fermentation of organic waste. Science Time, 10, 258–262.
7. Andrews, J.F., & Graef, S.P. (1971). Dynamic modeling and simulation of the anaerobic digestion process. Advances in Chemistry Series (Am. Chem. Soc.), 105, 126.10.1021/ba-1971-0105.ch008
8. Haugen, F., Bakke, R., & Lie, B. (2013). Adapting dynamic mathematical models to a pilot anaerobic digestion reactor. Modeling, Identification and Control, 34, 35–54.10.4173/mic.2013.2.1
9. Dewil, R., & Lauwers, J. (2011). Anaerobic digestion of biomass and waste: Current trends in mathematical modeling. IFAC Proceedings Volumes, 44, 5024–5033.10.3182/20110828-6-IT-1002.03208
10. Presura, A., Robescu, L., & Panaitescu, I. (2010). Modeling and simulation of biological anaerobic treatment of sludge resulted from wastewater treatment. Recent Advances in Energy, Environment, Economics and Technological Innovation, 1, 55–60.
14. Ruzhinskaya, L.I., & Fomenkova, A.A. (2014). Mathematical modeling of the process of anaerobic digestion of organic substrate. Review. Scientific Journal “ScienceRise”, 2, 63–69.
15. Vorobiev, V., Dychko, A., & Opolinskiy, I. (2016). Improving the efficiency of biotransformation of hazardous pollutants in wastewater biogas. Proceedings of the National Technical University of Ukraine “Kyiv Polytechnic Institute”. Series “Mining”, 30, 153–159.