Have a personal or library account? Click to login
The Control Principles of the Wind Energy Based DC Microgrid Cover

The Control Principles of the Wind Energy Based DC Microgrid

By: G. Zaleskis and  I. Rankis  
Open Access
|May 2018

References

  1. 1. Suskis, P., & Rankis, I. (2012). Buck-boost DC-DC converter for wind and hydrogen based autonomous energy supply system. Biennial Baltic Electronics Conference (BEC) 2012, 215–218.10.1109/BEC.2012.6376855
  2. 2. Koutroulis, E., & Kalaitzakis, K. (2006). Design of a maximum power tracking system for wind-energy-conversion applications. IEEE Transactions on Industrial Electronics, 53(2), 486–494.10.1109/TIE.2006.870658
  3. 3. Eltamaly, A.M., Alolah, A.I., & Farh, H.M. (2013). Maximum power extraction from utility-interfaced wind turbines. New Developments in Renewable Energy. InTech, 159–192.
  4. 4. Wang, Q., & Chang, L. (2004). An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Transactions on Power Electronics, 19(5), 1242–1249.10.1109/TPEL.2004.833459
  5. 5. Graillot, A. (2009). Hybrid micro grids for rural electrification: Developing appropriate technology. AIE Event, 41.
  6. 6. Karlsson, P. (2002). DC distributed power systems. Lund University, 148.
  7. 7. Laudani, G.A., & Mitcheson, P.D. Comparison of cost and efficiency of DC versus AC in office buildings. Transformation of the Top and Tail of Energy Networks, London.
  8. 8. Deaconu, D., Chirila, A., Albu, M., & Toma, L. (2007). Studies on a LV DC network. European Conference on Power Electronics and Applications, 1–7.10.1109/EPE.2007.4417634
  9. 9. Sannino, A., Postiglione, G., & Bollen, M. H. J. (2003). Feasibility of a DC network for commercial facilities. IEEE Transactions on Industry Applications, 39(5), 1499–1507.10.1109/TIA.2003.816517
  10. 10. Hammerstrom, D. J. (2007). AC versus DC distribution systems-did we get it right? IEEE Power Engineering Society General Meeting, 1–5.10.1109/PES.2007.386130
  11. 11. Kwasinski, A. (2012). Micro-grids architectures, stability and protections. Available at http://users.ece.utexas.edu/~kwasinski/EE394J10_DG_stability%20architecture%20comp.ppt
  12. 12. Zaleskis, G., Steiks, I., Pumpurs, A., & Krievs, O. (2015). DC-AC Converter for Load Supply in Autonomous Wind-Hydrogen Power System. In 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 14 October 2015 (pp. 169–173). Riga: RTU Press.10.1109/RTUCON.2015.7343118
  13. 13. Pellicciari, M., Avotins, A., Bengtsson, K., & Meike, D. (2015). AREUS – Innovative hardware and software for sustainable industrial robotics. IEEE Conference on Automation Science and Engineering, 2015, 1325–1332.10.1109/CoASE.2015.7294282
  14. 14. Camm, E.H., Behnke, M.R., Bolado, O., Walling, R. (2009). Characteristics of wind turbine generators for wind power plants. University of Tennessee, 1–5.10.1109/PES.2009.5275330
  15. 15. Rashid, M.H. (2001). Power electronics handbook. San Diego, California: Academic Press.
  16. 16. Meike, D. (2013). Increasing energy efficiency of robotized production systems in automobile manufacturing. Ph.D. Thesis. Riga: Riga Technical University.
  17. 17. Latvian National standardisation institution “Latvijas Standarts”. (2012). LVS EN 60038:2012 “CENELEC standard voltages”.
  18. 18. Suskis, P., & Rankis, I. (2012). Performance of a voltage step-up/step-down transformerless dc/dc converter: Analytical model. Latvian Journal of Physics and Technical Sciences, 49(4), 29–40.10.2478/v10047-012-0021-5
  19. 19. Suskis, P. (2013). DC/DC voltage h-bridge converter for autonomous hydrogen system with fuzzy logic. The 54th International Scientific Conference of Riga Technical University, 1–4.
  20. 20. Zaleskis, G. (2017). Research of the automation tasks of the wind generators in the low-power microgrids. Ph.D. Thesis (in Latvian). Riga: Riga Technical University.
DOI: https://doi.org/10.2478/lpts-2018-0010 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 28 - 36
Published on: May 19, 2018
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2018 G. Zaleskis, I. Rankis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.