1. Ludge, S. (2017). The value of flexibility for fossil-fired power plants under the conditions of the Strommarkt 2.0. International Journal for Electricity and Heat Generation VGB Powertech, 3, 21–24.
3. Richter, M., Mollenbruck, F., Obermuller, F., Knaut, A., Weiser, F., & Lehmann D. (2016). Flexibilization of steam power plants as partners for renewable energy systems. In Power Systems Computation Conference, 20–24 August 2016 (pp. 1–8). Genoa, Italy: IEEE. DOI: 10.1109/PSCC.2016.754084010.1109/PSCC.2016.7540840
4. Chen, X., Kang, C., O'Malley, M., Xia, Q., Bai, J., Liu, C., Sun, R., Wang, W., & Li, H. (2015). Increasing the Flexibility of Combined heat and power for wind power integration in China: Modeling and Implications. IEEE Transactions on Power Systems, 30 (4), 1848–1857. DOI: 10.1109/TPWRS.2014.235672310.1109/TPWRS.2014.2356723
8. Ivanova, P., Sauhats, A., Linkevics, O., & Balodis, M. (2016). Combined heat and power plants towards efficient and flexible operation. In IEEE 16th International Conference on Environmental and Electrical Engineering (EEEIC), 7–10 June 2016 (pp. 1 – 6). Florence Italy: IEEE. DOI:10.1109/EEEIC.2016.755587410.1109/EEEIC.2016.7555874
11. Ivanova, P., Grebesh, E., Mutule, A., & Linkevics, O. (2017). An approach to optimise the cycling operation of conventional combined heat power plants. Energetika. 64(4), 1–19.10.6001/energetika.v63i4.3621