Have a personal or library account? Click to login
Spontaneuos and Parametric Processes in Warm Rubidium Vapours Cover

Spontaneuos and Parametric Processes in Warm Rubidium Vapours

Open Access
|Dec 2014

References

  1. 1. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., & Makarov, V. (2010). Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics, 4(10), 686-689. DOI:10.1038/nphoton.2010.21410.1038/nphoton.2010.214
  2. 2. http://www.idquantique.com/. QUANTIS: physical random number generator.
  3. 3. Johnson, M. W. et al. (2011). Quantum annealing with manufactured spins. Nature, 473(7346), 194-198. DOI:10.1038/nature1001210.1038/nature1001221562559
  4. 4. Hammerer, K. (2010). Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82(2), 1041-1093. DOI:10.1103/RevModPhys.82.104110.1103/RevModPhys.82.1041
  5. 5. Chalupczak, W., Godun, R. M., Pustelny, S., & Gawlik, W. (2012). Room temperature femtotesla radio-frequency atomic magnetometer. Applied Physics Letters, 100(24), 242401. DOI:10.1063/1.472901610.1063/1.4729016
  6. 6. Hammerer, K., Polzik, E., & Cirac, J. (2005). Teleportation and spin squeezing utilizing multimode entanglement of light with atoms. Physical Review A, 72(5), 052313. DOI:10.1103/PhysRevA.72.05231310.1103/PhysRevA.72.052313
  7. 7. Boyer, V., Marino, A. M., Pooser, R. C., & Lett, P. D. (2008). Entangled images from four-wave mixing. Science (N.Y.), 321(5888), 544–547. DOI:10.1126/science.115827510.1126/science.115827518556517
  8. 8. Kozhekin, A., Molmer, K., & Polzik, E. S. (2000). Quantum memory for light. Physical Review A, 62(3), 1473. DOI:10.1103/PhysRevA.62.03380910.1103/PhysRevA.62.033809
  9. 9. Porras, D., & Cirac, J. I. (2008). Collective generation of quantum states of light by entangled atoms. Physical Review A, 78(5), 1-14. DOI:10.1103/PhysRevA.78.05381610.1103/PhysRevA.78.053816
  10. 10. Parniak, M., & Wasilewski, W. (2014). Direct observation of atomic diffusion in warm rubidium ensembles. Applied Physics B, 116(2), 415-421. DOI:10.1007/s00340-013-5712-y10.1007/s00340-013-5712-y
  11. 11. Chrapkiewicz, R., Wasilewski, W., & Radzewicz, C. (2014). How to measure diffusional decoherence in multimode rubidium vapor memories? Optics Communications, 317, 1-6. DOI:10.1016/j.optcom.2013.12.02010.1016/j.optcom.2013.12.020
  12. 12. Acosta, V. M., Jarmola, A., Windes, D., Corsini, E., Ledbetter, M. P., Karaulanov, T., Auzinsh, M., Rangwala, S. A., Kimball, D. F. J., & Budker, D. (2010). Rubidium dimers in paraffin-coated cells. New Journal of Physics, 12(8), 83054. DOI:10.1088/1367-2630/12/8/08305410.1088/1367-2630/12/8/083054
  13. 13. Chrapkiewicz, R., & Wasilewski, W. (2012). Generation and delayed retrieval of spatially multimode Raman scattering in warm rubidium vapours. Optics Express, 20(28), 29540–29551. DOI:10.1364/OE.20.02954010.1364/OE.20.029540
  14. 14. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurásek, J., & Polzik, E. S. (2004). Experimental demonstration of quantum memory for light. Nature, 432(7016), 482-486. DOI:10.1038/nature0306410.1038/nature03064
  15. 15. Krauter, H., Muschik, Ch. A., Jensen, K., Wasilewski, W., Petersen, J. M., Cirac, & J. I., Polzik, E. S. (2011). Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Physical Review Letters, 107(8), 080503. DOI:10.1103/PhysRevLett.107.08050310.1103/PhysRevLett.107.080503
  16. 16. Shuker, M., Firstenberg, O., Pugatch, R., Ron, A., & Davidson, N. (2008). Storing images in warm atomic vapor. Physical Review Letters, 100(22). DOI:10.1103/PhysRevLett.100.22360110.1103/PhysRevLett.100.223601
  17. 17. Hosseini, M., Sparkes, B. M., Hétet, G., Longdell, J. J., Lam, P. K., & Buchler, B. C. (2009). Coherent optical pulse sequencer for quantum applications. Nature, 461(7261), 241-245. DOI:10.1038/nature0832510.1038/nature08325
  18. 18. Matsko, A. B. et al. (2001). Slow, ultraslow, stored, and frozen light. Advances in atomic, molecular, and optical physics, 46, 191-242. DOI:10.1016/S1049-250X(01)80064-110.1016/S1049-250X(01)80064-1
  19. 19. Fleischhauer, M. (2005). Electromagnetically induced transparency: Optics in coherent media. Reviews of Modern Physics,46(2), 633-673. DOI:10.1103/RevModPhys.77.63310.1103/RevModPhys.77.633
  20. 20. Chrapkiewicz, R., & Wasilewski, W. (2010). Multimode spontaneous parametric down-conversion in a lossy medium. Journal of Modern Optics, 57(5), 345-355. DOI:10.1080/0950034100364258810.1080/09500341003642588
  21. 21. Duan, L. M, Lukin, M. D., Cirac, J. I., & Zoller, P. (2001). Long-distance quantum communication with atomic ensembles and linear optics. Nature, 81(6862), 5788-418. DOI:10.1038/3510650010.1038/3510650011719796
  22. 22. Scully, M. O., & Zubairy, M. S. (1997). Quantum Optics. Cambridge (UK): Cambridge University Press.10.1017/CBO9780511813993
  23. 23. Raymer, M. G. (2004). Quantum state entanglement and readout of collective atomic-ensemble modes and optical wave packets by stimulated Raman scattering. Journal of Modern Optics, 51(12), 1739-1759, DOI:10.1080/0950034040823248810.1080/09500340408232488
  24. 24. Steck, D. A. (2009). Rubidium 87 D Line Data. http://steck.us/alkalidata/
  25. 25. Amuneal. Magnetic Shielding. Theory and Design. http://www.amuneal.com/.
  26. 26. Corwin, K. L., Lu, Z. T., Hand, C. F., Epstein, R. J., & Wieman, C. E. (1998). Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. Applied Optics, 37(15), 3295–3298. DOI:10.1364/AO.37.00329510.1364/AO.37.00329518273286
  27. 27. Happer, W., Jau, Y.-Y., & Walker, T. (2010). Optically Pumped Atoms. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co. KgaA.10.1002/9783527629503
  28. 28. Goldberg, E. A. (1981). Degaussing arrangement for maser surrounded by magnetic shielding. RCA Corporation. U.S. Patent no. 4286304. New York.
  29. 29. Zibrov, A., Lukin, M., Hollberg, L., & Scully, M. (2002). Efficient frequency up-conversion in resonant coherent media. Physical Review A, 65(5), 051801. DOI:10.1103/PhysRevA.65.05180110.1103/PhysRevA.65.051801
  30. 30. Sell, J. F., Gearba, M. A., DePaola, B. D., & Knize, R. J. (2014). Collimated blue and infrared beams generated by two-photon excitation in Rb vapor. Optics Letters, 39(3), 528. DOI:10.1364/OL.39.00052810.1364/OL.39.00052824487857
  31. 31. Vernier, A., Franke-Arnold, S., Riis, E., & Arnold, A. S. (2010). Enhanced frequency up-conversion in Rb vapor. Optics Express, 18(16), 17020–6. DOI:10.1364/OE.18.01702010.1364/OE.18.01702020721090
  32. 32. Willis, R., Becerra, F., Orozco, L., & Rolston, S. (2009). Four-wave mixing in the diamond configuration in an atomic vapor. Physical Review A, 79(3), 033814. DOI:10.1103/PhysRevA.79.03381410.1103/PhysRevA.79.033814
  33. 33. Srivathsan, B., Gulati, G. K., Chng, B., Maslennikov, G., Matsukevich, D., & Kurtsiefer, C. (2013). Narrow-band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble. Physical Review Letters, 111(12), 123602. DOI:10.1103/PhysRevLett.111.12360210.1103/PhysRevLett.111.12360224093260
  34. 34. Walker, G. et al. (2012). Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Physical Review Letters, 108(24), 243601. DOI:10.1103/PhysRevLett.108.243601.10.1103/PhysRevLett.108.24360123004270
DOI: https://doi.org/10.2478/lpts-2014-0028 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 21 - 34
Published on: Dec 15, 2014
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2014 M. Dąbrowski, M. Parniak, D. Pęcak, R. Chrapkiewicz, W. Wasilewski, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.