Have a personal or library account? Click to login
Experimental and Numerical Study of Swirling Flows and Flame Dynamics Cover

Experimental and Numerical Study of Swirling Flows and Flame Dynamics

By: M. Abricka,  I. Barmina,  R. Valdmanis and  M. Zake  
Open Access
|Sep 2014

References

  1. 1. Gupta, A.K., Lilley, D.G., & Syred, N. (1984). Swirl Flows. Abacus Press UK), 588 p.
  2. 2. Meier, W., Duan, X.R., & Weigand, P. (2006). Investigations of swirl flames in a gas turbine model combustor: turbulence-chemistry interactions. Combustion and Flame, 144, 225-236.10.1016/j.combustflame.2005.07.009
  3. 3. Külsheimer, C., & Büchner, H. (2002). Combustion dynamics of turbulent swirling flames. Combustion and Flame, 131, 70-84.10.1016/S0010-2180(02)00394-2
  4. 4. Driscoll, J. F., & Temme, J. (2011). Role of swirl in flame stabilization. In: 49thAIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-108, 1-11.10.2514/6.2011-108
  5. 5. Candel, S., Durox, D., Schuller, T., Palies, P., Bourgouin, J.F., & Moeck, J. P. (2012). Progress and challenges in swirling flame dynamics. Comptes Rendus Mecanique, 340, 758-768.10.1016/j.crme.2012.10.024
  6. 6. Physics of Swirling Flow (2009). http://www.personal.psu.edu/users/y/x/yxw145/
  7. 7. Harvey, J.K. (1962). Some observations of the vortex breakdown phenomenon. J. Fluid Mechanics, 14, 585-592.10.1017/S0022112062001470
  8. 8. Fritz, J, Kroner, M., & Sattelmayer, T. (2001). Flashback in a swirl burner with cylindrical premixing zone. Proceedings of ASME TURBO EXPO 2001, 2001GT-0054, p. 10.10.1115/2001-GT-0054
  9. 9. Stöhr, M., Sadanandan, R., & Meier, W. (2009). Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proceedings of Combustion Institute, 32, 2925-2932.10.1016/j.proci.2008.05.086
  10. 10. Cheng, R.K., Yegian, D.T., Miyasato, M.M., Samuelsen, G.S., Benson, C.E., Pellizzari, R., & Loftus, P. (2000). Scaling and development of low-swirl burners for low-emission furnaces and boilers, Proceeding of the Combustion Institute, 28, 1305-1313. http://www2.lbl.gov/tt/publications/916pub1.pdf
  11. 11. Zaķe, M., Barmina, I., Descnickis, A., Krishko, V., & Gedrovics, M. (2009). Experimental study of the combustion dynamics of renewable & fossil fuel co-fire in swirling flame. Latvian Journal of Physics and Technical Sciences, 46(6), 3-16. http://versita.metapress.com/content/e175095347015913/fulltext.pdf 10.2478/v10047-009-0024-z
DOI: https://doi.org/10.2478/lpts-2014-0021 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 25 - 40
Published on: Sep 19, 2014
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2014 M. Abricka, I. Barmina, R. Valdmanis, M. Zake, published by Institute of Physical Energetics
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.