Have a personal or library account? Click to login
Research into the 3d roughness of a rough surface Cover
By: A. Avisane,  J. Rudzitis and  G. Springis  
Open Access
|Mar 2014

Abstract

One of the most important parameters in determination of the deformation associated with roughness is its height on the surface. The authors study the density of probability distribution as related to the surface peak height (SPH) and estimate the mathematical expectation (ME) of SPH for the roughness values above a determined deformation level. In the contact theory, the surface is modelled as a normal random field described by the Nayak SPH formula. Since this formula is practically inapplicable in the engineering tasks, the authors propose to replace it by a simpler distribution law. For this purpose the former is compared with two other formulas obeying the most known probability distribution laws: of normal distribution (Gauss’) law and Rayleigh’s law. Comparison of these three formulas made it possible to derive a simpler yet sufficiently precise one. In the work, the numerical values of the density of SPH probability distribution and the relevant ME values at different deformation levels for all three formulas.

DOI: https://doi.org/10.2478/lpts-2014-0007 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 62 - 73
Published on: Mar 25, 2014
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2014 A. Avisane, J. Rudzitis, G. Springis, published by Institute of Physical Energetics
This work is licensed under the Creative Commons License.