Have a personal or library account? Click to login
STRUCTURAL CHANGES IN PULSED LASER ABLATED CuInSe2 COMPOUND STRUKTURĀLĀS IZMAIŅAS IMPULSA LĀZERA ABLĒTAJĀ CuInSe2 SAVIENOJUMĀ Cover

STRUCTURAL CHANGES IN PULSED LASER ABLATED CuInSe2 COMPOUND STRUKTURĀLĀS IZMAIŅAS IMPULSA LĀZERA ABLĒTAJĀ CuInSe2 SAVIENOJUMĀ

Open Access
|Jan 2014

References

  1. 1. Wyatt, K. Metzger, Ingrid, L. Repins, & Miguel, A. Contreras (2008). Long lifetimes in high efficiency Cu(In,Ga)Se2 solar cells. Appl. Phys. Lett., 93, 022110.
  2. 2. Rega, N., Siebentritt, S., Albert, J., Nishiwaki, S., Zajogin, A., Lux-Steiner, M. C., Kniese, R., & Romero, M. J. (2005). Excitonic luminescence of Cu(In,Ga) Se-2. Thin Solid Films, 480, 286-290.10.1016/j.tsf.2004.11.079
  3. 3. Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2012). Solar cell efficiency tables (version 39) Prog. Photovolt Res. Appl., 20, 12-20.10.1002/pip.2163
  4. 4. Thornton, J.A., Lommasson, T.C., Talieh, H., &Tseng, B.H. (1988). Reactive sputtered CuInSe2. Solar Cells. 24, P.1-9.10.1016/0379-6787(88)90030-0
  5. 5. Guillenmoles, J.F., Lusson, A., Cowache, P., Massaccesi, S., Vedel, J., & Lincot, D. (1994). Recrystallization of electrodeposited copper indium diselenide thin films in an atmosphere of elemental selenium.Adv. Mater., 6, 376.
  6. 6. Guillenmoles, J.F., Cowache, P., Lusson, A., Fezzaa, K., Boisivon, F., Vedel, J., & Lincot, D. (1996). One step electrodeposition of CuInSe2: Improved structural, electronic, and photovoltaic properties by annealing under high selenium pressure. J.Appl. Phys.,79, 7293.
  7. 7. Gabor, A.M., Tuttle, J.R., Albin, D.S., Contreras, M.A., Noufi, R.,& Hermann, A.M. (1994). High‐efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films. Appl. Phys. Lett., 65, 198.
  8. 8. Castro, S.L., Bailey, S.G., Raffaelle, R.P., Banger, K.K., & Hepp, A.F. (2003). Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors. Chem. Mater. 15, 3142.10.1021/cm034161o
  9. 9. Gardner, J.S., Shurdha, E., Wang, C., Lau, L., Rodriguez, R.G., & Pak, J.J. (2008). Rapid synthesis and size control of CuInS2 semi-conductor nanoparticles using microwave irradiation J. Nanopart. Res. 10, 633.10.1007/s11051-007-9294-7
  10. 10. Bensebaa, F., Durand, C., Aouadou, A., Scoles, L., Du, X., Wang, D., & Le Page, Y. (2010). A new green synthesis method of CuInS2 and CuInSe2 nanoparticles and their integration into thin films. J. Nanopart. Res. 12, 1897.10.1007/s11051-009-9752-5
  11. 11. Fujiwara, H., Yanagida, S., & Kamat, PV. (1999). Visible laser induced fusion and fragmentation of thionicotinamide-capped gold nanoparticles. J. Phys. Chem. B. 103, 2589-2591.10.1021/jp984429c
  12. 12. Hodak, J. H., Henglein, A., Giersig, M. & Hartland, G. V. (2000). Laser-induced inter-diffusion in AuAg core-shell nanoparticles. J. Phys. Chem. B 104, 11708.10.1021/jp002438r
  13. 13. Ya-Huey Yeh, Ming-Shin Yeh, Yi-Pei Lee, and Chen-Sheng Yeh. (1998). Formation of Cu nanoparticles from CuO powder by laser ablation in 2-Propanol. Chemistry Letters, 1183-1184.10.1246/cl.1998.1183
  14. 14. Anne HAHN, Stephan BARCIKOWSKI & Boris N. CHICHKOV. (2008). Influences on nanoparticle production during pulsed laser ablation. JLMN-Journal of Laser Micro/Nanoengineering, 3, (2).10.2961/jlmn.2008.02.0003
  15. 15. Hermann, J., Benfarah, M., Coustillier, G., Bruneau, S., Axente, E., Guillemoles, J.-F. Sentis, M., Alloncle, P., & Itina T. (2005). Selective ablation of thin films with short and ultrashort laser pulses. Applied Surface Science, 252 (13).
  16. 16. Mohamed Boutinguiza, Rafael Comesaña, Fernando Lusquiños, Antonio Riveiro, & Juan Pou (2011). Production of nanoparticles from natural hydroxylapatite by laser ablation. Nanoscale Research Letter, 6, 255.10.1186/1556-276X-6-255
  17. 17. Park, H.K., & Haglund, R.F. (1997). Laser ablation and desorption from calcite from ultraviolet to mid-infrared wavelengths. Appl. Phys. A., 64, 431-438.10.1007/s003390050501
  18. 18. Chen, Y., Bulatov, V., Singer, L., Stricker, J., & Schechter, I. (2005). Mapping and elemental fractionation of aerosols generated by laser-induced breakdown ablation. Anal. Bioanal. Chem., 383, 1090-1097.10.1007/s00216-005-0126-2
  19. 19. Kotaidis, V., Dahmen, C., & Von Plessen, G. (2006). Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. J. Chem Phys., 124, 184702.10.1063/1.2187476
  20. 20. Kotaidis, V., & Plech, A. (2005). Cavitation dynamics on the nanoscale. Appl Phys Lett., 87, 213102.10.1063/1.2132086
  21. 21. Miotello, A., & Kelly R. (1999). Laser-induced phase explosion: new physical problems when a condensed phase approaches the thermodynamic critical temperature. Appl. Phys. A. Mater. Sci. Process, 69A, S67-S73.
  22. 22. Kelly, R., & Miotello, A. (1999). Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses. Phys Rev E., 60, 2616-2625.10.1103/PhysRevE.60.2616
  23. 23. Zhigilei, L.V., & Garrison, B.J. (1999). Molecular dynamics simulation study of the fluence dependence of particle yield and plume composition in laser desorption and ablation of organic solids. Appl Phys Lett., 74, 1341-1343.10.1063/1.123544
  24. 24. Zhigilei, L.V., Kodali, PBS., & Garrison, B.J. (1997). On the threshold behavior in the laser ablation of organic solids. Chem Phys Lett., 276, 269-273.10.1016/S0009-2614(97)00808-7
  25. 25. Paltauf, G., & Dyer, P.E. (2003). Photomechanical processes and effects in ablation. Chem. Rev., 103, 487-518. 10.1021/cr010436c12580640
DOI: https://doi.org/10.2478/lpts-2013-0040 | Journal eISSN: 2255-8896 | Journal ISSN: 0868-8257
Language: English
Page range: 54 - 60
Published on: Jan 29, 2014
Published by: Institute of Physical Energetics
In partnership with: Paradigm Publishing Services
Publication frequency: 6 issues per year

© 2014 A. Ogurcovs, V. Gerbreders, E. Tamanis, E. Sledevskis, A. Gerbreders, published by Institute of Physical Energetics
This work is licensed under the Creative Commons License.