Have a personal or library account? Click to login
An analysis of flooding coverage using remote sensing within the context of risk assessment Cover

An analysis of flooding coverage using remote sensing within the context of risk assessment

By: Tatiana Solovey  
Open Access
|Dec 2019

References

  1. Butera, M.K., 1983. Remote sensing of wetlands. IEEE Transactions on Geoscience and Remote Sensing 3, 383–392.10.1109/TGRS.1983.350471
  2. Chavez, P.S., Sides, S.C. & Anderson, J.A., 1991. Comparison of 3 different methods to merge multiresolution and multispectral data-Landsat tm and spot panchromatic. Photogrammetric Engineering and Remote Sensing 57, 295–303.
  3. Dong, Z.Y., Wang, Z.M., Liu, D.W. & Song, K.S., 2014. Mapping wetland areas using landsat-derived NDVI and LSWI: a case study of west songnen plain, Northeast China. Journal of the Indian Society of Remote Sensing 42, 569–576.10.1007/s12524-013-0357-1
  4. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F. & Bargellini, P., 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of Environment 120, 25–36.10.1016/j.rse.2011.11.026
  5. Dvorett, D., Davis, C. & Papes, M., 2016. Mapping and hydrologic attribution of temporary wetlands using recurrent Landsat imagery. Wetlands 36, 431–443.10.1007/s13157-016-0752-9
  6. Gao, B.C., 1996. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58, 257–266.10.1016/S0034-4257(96)00067-3
  7. Guyot, G., 1989. Signatures spectrales des surfaces naturelles. Télédétection satellitaire 5, Paradigme, Caen, 178 pp.
  8. Huang, C., Chen, Y. & Wu, J.P., 2014a. DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation mapping. International Journal of Remote Sensing 35, 365–381.10.1080/01431161.2013.871084
  9. Huang, C.Q., Peng, Y., Lang, M.G., Yeo, I.Y. & McCarty, G., 2014b. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sensing of Environment 141, 231–242.10.1016/j.rse.2013.10.020
  10. Huete, A., Liu, H., Batchily, K.V. & Van Leeuwen, W., 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment 59, 440–451.10.1016/S0034-4257(96)00112-5
  11. Islam, M. & Sado, K., 2006. Analyses of ASTER and spectroradiometer data with in situ measurements for turbidity and transparency study of lake Abashri. International Journal of Geoinformatics 2, 31–45.
  12. Janica, R., Frankowski, Z., Jóźwiak, K., Kocyła, J., Majer, E., Sokołowska, M., Solovey, T., Woźnicka, M., Honczaruk, M., Kucharska, M. & Majer, K., 2017. Metodyka opracowania wstępnej oceny ryzyka powodziowego (WORP) w zakresie powodzi od wód podziemnych [Methodology for the development of preliminary flood risk assessment (WORP) for flooding from groundwater]. PIG–PIB, Warszawal, 56 pp.
  13. Jensen, J.R., 1996. Introductory digital image processing, a remote sensing perspective. Prentice Hall, 316 pp.
  14. Kayastha, N., Thomas, V., Galbraith, J. & Banskota, A., 2012. Monitoring wetland change using inter-annual Landsat time-series data. Wetlands 32, 1149–1162.10.1007/s13157-012-0345-1
  15. Kopeć, D., Michalska-Hejduk, D. & Krogulec, E., 2013. The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecolog Engineering 57, 242–251.10.1016/j.ecoleng.2013.04.028
  16. Krogulec, E., 2004. Ocena podatności wód podziemnych na zanieczyszczenia w dolinie rzecznej na podstawie przesłanek hydrodynamicznych [Vulnerability assessment of groundwater pollution in the river valley on the basis of hydrodynamic evidence]. Uniwersytet Warszawski, Warszawa, 177 pp.
  17. Krogulec, E., 2011. Charakterystyka uwarunkowań hydroekologicznych [Characteristics of hydroecological conditions]. [In:] T. Okruszko, W. Mioduszewski & L. Kucharski (Eds): Ochrona i renaturyzacja mokradeł Kampinoskiego Parku Narodowego [Protection and restoration of wetlands in the Kampinos National Park]. Szkoła Główna Gospodarstwa Wiejskiego, Warszawa, 73–92.
  18. Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A. & Lafaye, M., 2007. Classification of ponds from highspatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment 106, 66–74.10.1016/j.rse.2006.07.012
  19. Li, J.H. & Chen, W.J., 2005. A rule-based method for mapping Canada’s wetlands using optical, radar and DEM data. International Journal of Remote Sensing 26, 5051–5069.10.1080/01431160500166516
  20. Li, W.B., Du, Z.Q., Ling, F., Zhou, D.B., Wang, H.L., Gui, Y.M., Sun, B.Y. & Zhang, X.M., 2013. A comparison of land surface water mapping using the normalized difference water index from TM, ETM plus and ALI. Remote Sensing 5, 5530–5549.10.3390/rs5115530
  21. Li, W., Qin, Y., Sun, Y., Huang, H., Ling, F., Tian, L. & Ding, Y., 2016. Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sensing Letters 7, 121–130.10.1080/2150704X.2015.1117151
  22. Lin, K.C., 2005. On improvement of the computation speed of Otsu’s image thresholding. Journal of Electronic Imaging 14, 023011.10.1117/1.1902997
  23. Martinez, J. & Le Toan, T., 2007. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon Floodplain using multitemporal SAR data. Remote Sensing of Environment 108, 209−223.10.1016/j.rse.2006.11.012
  24. McFeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17, 1425–1432.10.1080/01431169608948714
  25. Melack, J.M. & Hess, L.L., 2010. Remote sensing of the distribution and extent of wetlands in the Amazon basin Amazonian floodplain forests. Springer, pp. 43–59.10.1007/978-90-481-8725-6_3
  26. Michalska-Hejduk, D., 2001. Stan obecny i kierunki zmian roślinności nieleśnej Kampinoskiego Parku Narodowego [Current state and directions of change of non-forest vegetation of the Kampinos National Park]. Monographia Botanica 89, 1–134.10.5586/mb.2001.001
  27. Monserud, R.A. & Leemans, R., 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling 62, 275–293.10.1016/0304-3800(92)90003-W
  28. Morandeira, N.S., Grings, F., Facchinetti, C. & Kandus, P., 2016. Mapping plant functional types in floodplain wetlands: an analysis of C-Band polarimetric SAR data from RADARSAT-2. Remote Sensing 8, 174.10.3390/rs8030174
  29. Moser, L., Schmitt, A., Wendleder, A. & Roth, A., 2016. Monitoring of the lac Bam wetland extent using dual-polarized X-band SAR data. Remote Sensing 8, 302.10.3390/rs8040302
  30. Mwita, E., Menz, G., Misana, S., Becker, M., Kisanga, D. & Boehme, B., 2013. Mapping small wetlands of Kenya and Tanzania using remote sensing techniques. International Journal of Applied Earth Observation and Geoinformation 21, 173–183.10.1016/j.jag.2012.08.010
  31. Nandi, I., Srivastava, P.K. & Shah, K., 2017. Floodplain mapping through support vector machine and optical/infrared images from Landsat 8 OLI/TIRS sensors: case study from Varanasi. Water Resources Management 31, 1157–1171.10.1007/s11269-017-1568-y
  32. Napiórkowska, M., 2014. Monitoring wetlands ecosystems using ALOS PALSAR (L-Band, HV) supplemented by optical data: a case study of Biebrza Wetlands in Northeast Poland. Remote Sensing 6, 1605–1633.10.3390/rs6021605
  33. Olszewski, A., Wierzbicki, A., Degórska, A., Ferchmin, M., Gudowicz, J., Lenartowicz, M. & Otręba, N., 2018. Raport stacji bazowej zintegrowanego monitoringu środowiska przyrodniczego „Pożary” za rok 2017 [Report of the base station of the Integrated Monitoring of Natural Environment „Pożary” for 2017]. Kampinoski Park Narodowy, Izabelin.
  34. Ramsey, E.W. & Laine, S.C., 1997. Comparison of Landsat thematic mapper and high resolution photography to identify change in complex coastal wetlands. Journal of Coastal Research 13, 281–292.
  35. Seiler, R., Schmidt, J., Diallo, O. & Csaplovics, E., 2009. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data. Journal of Environmental Management 90, 2121–2129.10.1016/j.jenvman.2007.07.03518554774
  36. Sun, F.D., Sun, W.X., Chen, J. & Gong, P., 2012. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing 33, 6854–6875.10.1080/01431161.2012.692829
  37. White, L., Brisco, B., Dabor, M., Schmitt, A. & Pratt, A., 2015. A collection of SAR methodologies for monitoring wetlands. Remote Sensing 7, 7615–7645.10.3390/rs70607615
  38. Xu, H.Q., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 27, 3025–3033.10.1080/01431160600589179
  39. Zomer, R.J., Trabucco, A. & Ustin, S., 2009. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. Journal of Environmental Management 90, 2170–2177.10.1016/j.jenvman.2007.06.02818395960
DOI: https://doi.org/10.2478/logos-2019-0026 | Journal eISSN: 2080-6574 | Journal ISSN: 1426-8981
Language: English
Page range: 241 - 248
Submitted on: Mar 4, 2019
Accepted on: Aug 22, 2019
Published on: Dec 31, 2019
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Tatiana Solovey, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.