Have a personal or library account? Click to login
Modelling groundwater flow and nitrate transport: a case study of an area used for precision agriculture in the middle part of the Vistula River valley, Poland Cover

Modelling groundwater flow and nitrate transport: a case study of an area used for precision agriculture in the middle part of the Vistula River valley, Poland

Open Access
|Jan 2019

References

  1. Aljazzar, T. & Al-Qinna, M., 2016. Assessment of nitrate transport parameters using the advection-diffusion cell. Environmental Science and Pollution Research 23, 23145–23157.10.1007/s11356-016-7457-827591887
  2. Almasri, M.N. & Kaluarachchi, J.J., 2007. Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of Hydrology 343, 211–229.10.1016/j.jhydrol.2007.06.016
  3. ASTM D5084-00, 2001. Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International, West Conshohocken.
  4. Batu, V., 1998. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis. John Wiley & Sons, New York, 58 pp.
  5. Baum, R., Wojszczuk, K. & Wawrzynowicz, J., 2012. Miejsce i rola rolnictwa precyzyjnego w koncepcji zrównoważonego rozwoju gospodarstw rolnych [Place and role of precision agriculture at concept of sustainable development of farms]. Ekonomia i Środowisko 1, 71–83.
  6. Bieciński, P.A., 1960. Nowyj metod opredelenija koeffi-cienta wodootdaczi wodonosnych płastow [A new method for determining the storage coefficient of aquifers]. Gidrotehnika i Melioracija 6, 15–20.
  7. Bujakowski, F. & Falkowski, T., 2017. Wykorzystanie lotniczego skaningu laserowego do oceny warunków przepływu wód w osadach równi zalewowej [The use of airborne laser scanning in the assessment of groundwater flow conditions in floodplain deposits]. Przegląd Geologiczny 65, 443–449.
  8. Cesnulevicius, A., 2011. Method for evaluation water budget in small river catchments. [In:] Cygas, D. & Froehner, K.D. (Eds): Proceedings of the 8th International Conference on Environmental Engineering. Vilnius Gediminas Technical University, Vilnius, 538–542.
  9. Diamond, J. & Shanley, T., 2003. Infiltration rate assessment of some major soils. Irish Geography 36, 32–46.10.1080/00750770309555810
  10. Duda, R., Witczak, S. & Żurek, A., 2011. Mapa wrażliwości wód podziemnych Polski na zanieczyszczenie 1:500 000. Metodyka i objaśnienia tekstowe [Map of groundwater vurnerability for pollution in Poland. Scale 1:500,000. Methodology and explanation text]. Wyd. AGH, Kraków, 91–97.
  11. Falkowska, E. & Falkowski, T., 2015. Trace metals distribution pattern in floodplain sediments of a lowland river in relation to contemporary valley bottom morphodynamics. Earth Surface Processes and Landforms 40, 876–887.10.1002/esp.3680
  12. Frind, E., Duynisveld, W., Strebel, O. & Boettcher, O., 1990. Modeling of multicomponent transport with microbial transformation in ground water. The Fuhrberg case. Water Resources Research 26, 1707–1719.10.1029/WR026i008p01707
  13. Gworek, B., Dmuchowski, W., Koda, E., Marecka, M., Baczewska, A.H., Brągoszewska, P., Sieczka, A. & Osiński, P., 2016. Impact of the Municipal Solid Waste Łubna Landfill on Environmental Pollution by Heavy Metals. Water 8, 470.10.3390/w8100470
  14. Herbert, M. & Kovar, K. (Eds), 1998. Groundwater Quality: Remediation and Protection. IAHS, Wallingford, 11–18.
  15. Koda, E., 2012. Influence of Vertical Barrier Surrounding Old Sanitary Landfill on Eliminating Transport of Pollutants on the Basis of Numerical Modeling and Monitoring Results. Polish Journal of Environmental Studies 21, 929–935.
  16. Koda, E., Sieczka, A. & Osiński, P., 2016. Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability 8, 1253.10.3390/su8121253
  17. Kondracki, J., 2002. Geografia regionalna Polski [Regional geography of Poland]. Wydawnictwo Naukowe PWN, Warszawa, 188–194.
  18. Kozlovsky, E.A. (Ed.), 1988. Geology and the Environment. Vol. I, Water Management and the Geoenvironment. UNESCO Paris, UNEP Nairobi, 148–155.
  19. Macioszczyk, A. (Ed.), 2006. Podstawy hydrogeologii stosowanej [Introduction to applied hydrogeology]. Wydawnictwo Naukowe PWN, Warszawa, 184 pp.
  20. Marciniak, M., Małoszewski, P. & Okońska, M., 2006. Wpływ efektu skali eksperymentu kolumnowego na identyfikację parametrów migracji znaczników metodą rozwiązań analitycznych i modelowania numerycznego [The influence of column experiment scale effect on the tracer migration parameter identification by the methods of analytical solutions and numerical modelling]. Geologos 10, 167–187.
  21. Ritter, L., Solomon, K., Sibley, P., Hall, K., Keen, P., Mattu, G. & Linton, B., 2002. Sources, pathways, and relative risks of contaminants in surface water and groundwater: A perspective prepared for the Walkerton Inquiry. Journal of Toxicology and Environmental Health, Part A 65, 1–142.10.1080/15287390275333857211809004
  22. Rozporządzenie Ministra Środowiska z dnia 21 grudnia 2015 r. w sprawie kryteriów i sposobu oceny stanu jednolitych części wód podziemnych [Regulation of the Minister of Environment dated 21 December 2015 on the criteria and method of evaluating the underground water condition], 2016. Dz. U. 2016, poz. 85.
  23. Sarnacka, Z., 1976. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000, arkusz Piaseczno (560) [Explanations for the Detailed Geological Map of Poland 1:50,000, Piaseczno sheet (560)]. Wyd. Geologiczne, Warszawa, 41–42.
  24. Saxton, K.E. & Willey P.H., 2006. The SPAW model for agricultural field and pond hydrologic simulation. [In:] Singh, V.P. & Frevert, D.K. (Eds): Watershed models. CRC Press, Boca Raton, 401–435.10.1201/9781420037432.ch17
  25. Sieczka, A. & Koda, E., 2016a. Kinetic and equilibrium studies of sorption of ammonium in the soil-water environment in agricultural areas of Central Poland. Applied Sciences 6, 269.10.3390/app6100269
  26. Sieczka, A. & Koda, E., 2016b. Identification of Nitrogen Compounds Sorption Parameters in the Soil-Water Environment of a Column Experiment. Ochrona Środowiska 38, 29–34.
  27. Sieczka, A., Bujakowski, F., Falkowski, T. & Koda, E., 2018. Morphogenesis of a Floodplain as a Criterion for Assessing the Susceptibility to Water Pollution in an Agriculturally Rich Valley of a Lowland River. Water 10, 399.10.3390/w10040399
  28. Toride, N., Leij, F.J. & van Genuchten, M.T., 1999. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments. Version 2.1. Research Report No. 137. USDA-ARS U.S. Salinity Laboratory, Riverside.
  29. Uffink, G.J.M., 2003. Determination of Denitrification Parameters in Deep Groundwater. A Pilot Study for Several Pumping Stations in the Netherlands. RIVM Report 703717011. Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven.
  30. Witczak, W., Kania, J. & Kmiecik, E., 2013. Katalog wybranych fizycznych i chemicznych wskaźników zanieczyszczeń wód podziemnych i metod ich oznaczania [Guidebook on selected physical and chemical indicators of groundwater contamination and methods of their determination]. Inspekcja Ochrony Środowiska. Biblioteka Monitoringu Środowiska, Warszawa, 11–12.
  31. Zhu, C. & Anderson, G., 2002. Environmental Applications of Geochemical Modeling. Cambridge University Press, Cambridge, 136–137.
DOI: https://doi.org/10.2478/logos-2018-0023 | Journal eISSN: 2080-6574 | Journal ISSN: 1426-8981
Language: English
Page range: 225 - 235
Submitted on: May 10, 2018
Accepted on: Aug 5, 2018
Published on: Jan 25, 2019
Published by: Adam Mickiewicz University
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Anna Sieczka, Filip Bujakowski, Eugeniusz Koda, published by Adam Mickiewicz University
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.