Have a personal or library account? Click to login
Integrating Genetic Algorithms with LSTM for Improved Public Transportation Passenger Forecasting in Thailand Cover

Integrating Genetic Algorithms with LSTM for Improved Public Transportation Passenger Forecasting in Thailand

Open Access
|Feb 2026

References

  1. Office of Transport and Traffic Policy and Planning. (2019). Strategic plan for developing Thailand's transportation system for a period of 20 years. Ministry of Transport. Retrieved January 30, 2024, from https://www.otp.go.th/uploads/tiny_uploads/PDF/2563-06/25630603-StrategicPlan20yEditJan62.pdf
  2. Ahmad, I.S., Suharsono, A. & Pusporini, E. (2019). Prediction of the number of passengers at Yogyakarta airport. International Journal of Computing Science and Applied Mathematics 5(2), 66-69. DOI: 10.12962/j24775401.v5i2.5906.
  3. Chuwang, D.D. & Chen, W. (2022). Forecasting daily and weekly passenger demand for urban rail transit stations based on a time series model approach. Forecasting 4(4), 904-924. DOI: 10.3390/forecast4040049.
  4. Sigalingging, F.L., Irsan, M.Y. & Sesa, J. (2022). Forecasting the number of train passenger in Sumatra using ARIMA models. In Proceeding of The Symposium on Data Science (SDS) (2, pp. 8-13). Retrieved June 22, 2024, from http://e-journal.president.ac.id/Presunivojs
  5. Widiyaningtyas, T. & Qonita, A. (2019). Use of ARIMA method to predict the number of train passengers in Malang City. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 13-15 March 2019 (pp. 359-364). IEEE. DOI: 10.1109/ICAIIT.2019.8834663.
  6. Chaturvedi, S., Rajasekar, E., Natarajan, S. & McCullen, N. (2022). A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. Energy Policy 168, 113097. DOI: 10.1016/j.enpol.2022.113097.
  7. Battineni, G., Chintalapudi, N. & Amenta, F. (2020). Forecasting of COVID-19 epidemic size in four high hitting nations (USA, Brazil, India and Russia) by Fb-Prophet machine learning model. Applied Computing and Informatics. DOI: 10.1108/ACI-09-2020-0059.
  8. Raheem, F. & Iqbal, N. (2021). Forecasting foreign exchange rate: Use of FbProphet. In 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE), 16 September 2021 (pp. 44-48). IEEE. DOI: 10.1109/SCSE53661.2021.9568284.
  9. Khalil, S., Amrit, C., Koch, T. & Dugundji, E. (2021). Forecasting public transport ridership: Management of information systems using CNN and LSTM architectures. Procedia Computer Science 184, 283-290. DOI: 10.1016/j.procs.2021.03.037.
  10. Halyal, S., Mulangi, R.H. & Harsha, M. (2022). Forecasting public transit passenger demand: With neural networks using APC data. Case Studies on Transport Policy 10(2), 965-975. DOI: 10.1016/j.cstp.2022.03.003.
  11. Yang, D., Chen, K., Yang, M. & Zhao, X. (2019). Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features. IET Intelligent Transport Systems 13(10), 1475-1482. DOI: 10.1049/iet-its.2018.5511.
  12. Ministry of Transport. (2023). People's travel information during the COVID-19 situation: The frequency of information is daily. Retrieved September 10, 2023, from https://datagov.mot.go.th/dataset/covid-19/resource/71a552d0-0fea-4e05-b78c-42d58aa88db6
  13. Taylor, S.J. & Letham, B. (2018). Forecasting at scale. The American Statistician 72(1), 37-45. DOI: 10.1080/00031305.2017.1380080.
  14. Piccolo, D. (1990). A distance measure for classifying ARIMA models. Journal of Time Series Analysis 11(2), 153-164. DOI: 10.1111/j.1467-9892.1990.tb00048.x.
  15. Shumway, R.H. & Stoffer, D.S. (2017). Time series analysis and its applications: With R examples. Springer.
  16. Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S. & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief 29, 105340. DOI: 10.1016/j.dib.2020.105340.
  17. Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Computation 9(8), 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
  18. Ouyang, Q., Lv, Y., Ma, J. & Li, J. (2020). An LSTM-based method considering history and real-time data for passenger flow prediction. Applied Sciences 10(11), 3788. DOI: 10.3390/app10113788.
  19. Zhang, J., Chen, F. & Shen, Q. (2019). Cluster-based LSTM network for short-term passenger flow forecasting in urban rail transit. IEEE Access 7, 147653-147671. DOI: 10.1109/ACCESS.2019.2941987.
  20. Gorgolis, N., Hatzilygeroudis, I., Istenes, Z. & Gyenne, L.G. (2019). Hyperparameter optimization of LSTM network models through genetic algorithm. In 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), 15-17 July 2019 (pp. 1-4). IEEE. DOI: 10.1109/IISA.2019.8900675.
  21. Shahid, F., Zameer, A. & Muneeb, M. (2021). A novel genetic LSTM model for wind power forecast. Energy 223, 120069. DOI: 10.1016/j.energy.2021.120069.
  22. Tang, J., Zeng, J., Wang, Y., Yuan, H., Liu, F. & Huang, H. (2021). Traffic flow prediction on urban road network based on license plate recognition data: Combining attention-LSTM with genetic algorithm. Transportmetrica A: Transport Science 17(4), 1217-1243. DOI: 10.1080/23249935.2020.1845250.
  23. Kara, A. (2021). Multi-step influenza outbreak forecasting using deep LSTM network and genetic algorithm. Expert Systems with Applications 180, 115153. DOI: 10.1016/j.eswa.2021.115153.
  24. Chui, K.T., Gupta, B.B. & Vasant, P. (2021). A genetic algorithm optimized RNN-LSTM model for remaining useful life prediction of turbofan engine. Electronics 10(3), 285. DOI: 10.3390/electronics10030285.
  25. Willmott, C.J. & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30(1), 79-82. DOI: 10.3354/cr030079.
  26. Varvel, J.R., Donoho, D.L. & Shafer, S.L. (1992). Measuring the predictive performance of computer-controlled infusion pumps. Journal of Pharmacokinetics and Biopharmaceutics 20, 63-94. DOI: 10.1007/BF01143186.
  27. Khumla, P., Sarawan, K., Polpinij, J., Gonwirat, S., Chantima, P. & Sommool, W. (2024, June). Analyzing Machine Learning Techniques for Air Passenger Numbers Forecasting. In 2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 107-112). IEEE. DOI: 10.1109/JCSSE61278.2024.10613714.
  28. Štefancová, V., Harantová, V., Mazanec, J., Mašek, J. & Foltýnová, H.B. (2023). Analysis of Passenger Behaviour During the Covid-19 Pandemic Situation. LOGI–Scientific Journal on Transport and Logistics 14(1), 203-214. DOI: 10.2478/logi-2023-0019.
Language: English
Page range: 13 - 24
Submitted on: Dec 4, 2024
|
Accepted on: Dec 10, 2025
|
Published on: Feb 18, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Pornsiri Khumla, Kamthorn Sarawan, published by Institute of Technology and Business in České Budějovice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.