References
- Office of Transport and Traffic Policy and Planning. (2019). Strategic plan for developing Thailand's transportation system for a period of 20 years. Ministry of Transport. Retrieved January 30, 2024, from https://www.otp.go.th/uploads/tiny_uploads/PDF/2563-06/25630603-StrategicPlan20yEditJan62.pdf
- Ahmad, I.S., Suharsono, A. & Pusporini, E. (2019). Prediction of the number of passengers at Yogyakarta airport. International Journal of Computing Science and Applied Mathematics 5(2), 66-69. DOI: 10.12962/j24775401.v5i2.5906.
- Chuwang, D.D. & Chen, W. (2022). Forecasting daily and weekly passenger demand for urban rail transit stations based on a time series model approach. Forecasting 4(4), 904-924. DOI: 10.3390/forecast4040049.
- Sigalingging, F.L., Irsan, M.Y. & Sesa, J. (2022). Forecasting the number of train passenger in Sumatra using ARIMA models. In Proceeding of The Symposium on Data Science (SDS) (2, pp. 8-13). Retrieved June 22, 2024, from http://e-journal.president.ac.id/Presunivojs
- Widiyaningtyas, T. & Qonita, A. (2019). Use of ARIMA method to predict the number of train passengers in Malang City. In 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT), 13-15 March 2019 (pp. 359-364). IEEE. DOI: 10.1109/ICAIIT.2019.8834663.
- Chaturvedi, S., Rajasekar, E., Natarajan, S. & McCullen, N. (2022). A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. Energy Policy 168, 113097. DOI: 10.1016/j.enpol.2022.113097.
- Battineni, G., Chintalapudi, N. & Amenta, F. (2020). Forecasting of COVID-19 epidemic size in four high hitting nations (USA, Brazil, India and Russia) by Fb-Prophet machine learning model. Applied Computing and Informatics. DOI: 10.1108/ACI-09-2020-0059.
- Raheem, F. & Iqbal, N. (2021). Forecasting foreign exchange rate: Use of FbProphet. In 2021 International Research Conference on Smart Computing and Systems Engineering (SCSE), 16 September 2021 (pp. 44-48). IEEE. DOI: 10.1109/SCSE53661.2021.9568284.
- Khalil, S., Amrit, C., Koch, T. & Dugundji, E. (2021). Forecasting public transport ridership: Management of information systems using CNN and LSTM architectures. Procedia Computer Science 184, 283-290. DOI: 10.1016/j.procs.2021.03.037.
- Halyal, S., Mulangi, R.H. & Harsha, M. (2022). Forecasting public transit passenger demand: With neural networks using APC data. Case Studies on Transport Policy 10(2), 965-975. DOI: 10.1016/j.cstp.2022.03.003.
- Yang, D., Chen, K., Yang, M. & Zhao, X. (2019). Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features. IET Intelligent Transport Systems 13(10), 1475-1482. DOI: 10.1049/iet-its.2018.5511.
- Ministry of Transport. (2023). People's travel information during the COVID-19 situation: The frequency of information is daily. Retrieved September 10, 2023, from https://datagov.mot.go.th/dataset/covid-19/resource/71a552d0-0fea-4e05-b78c-42d58aa88db6
- Taylor, S.J. & Letham, B. (2018). Forecasting at scale. The American Statistician 72(1), 37-45. DOI: 10.1080/00031305.2017.1380080.
- Piccolo, D. (1990). A distance measure for classifying ARIMA models. Journal of Time Series Analysis 11(2), 153-164. DOI: 10.1111/j.1467-9892.1990.tb00048.x.
- Shumway, R.H. & Stoffer, D.S. (2017). Time series analysis and its applications: With R examples. Springer.
- Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S. & Ciccozzi, M. (2020). Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief 29, 105340. DOI: 10.1016/j.dib.2020.105340.
- Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Computation 9(8), 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
- Ouyang, Q., Lv, Y., Ma, J. & Li, J. (2020). An LSTM-based method considering history and real-time data for passenger flow prediction. Applied Sciences 10(11), 3788. DOI: 10.3390/app10113788.
- Zhang, J., Chen, F. & Shen, Q. (2019). Cluster-based LSTM network for short-term passenger flow forecasting in urban rail transit. IEEE Access 7, 147653-147671. DOI: 10.1109/ACCESS.2019.2941987.
- Gorgolis, N., Hatzilygeroudis, I., Istenes, Z. & Gyenne, L.G. (2019). Hyperparameter optimization of LSTM network models through genetic algorithm. In 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), 15-17 July 2019 (pp. 1-4). IEEE. DOI: 10.1109/IISA.2019.8900675.
- Shahid, F., Zameer, A. & Muneeb, M. (2021). A novel genetic LSTM model for wind power forecast. Energy 223, 120069. DOI: 10.1016/j.energy.2021.120069.
- Tang, J., Zeng, J., Wang, Y., Yuan, H., Liu, F. & Huang, H. (2021). Traffic flow prediction on urban road network based on license plate recognition data: Combining attention-LSTM with genetic algorithm. Transportmetrica A: Transport Science 17(4), 1217-1243. DOI: 10.1080/23249935.2020.1845250.
- Kara, A. (2021). Multi-step influenza outbreak forecasting using deep LSTM network and genetic algorithm. Expert Systems with Applications 180, 115153. DOI: 10.1016/j.eswa.2021.115153.
- Chui, K.T., Gupta, B.B. & Vasant, P. (2021). A genetic algorithm optimized RNN-LSTM model for remaining useful life prediction of turbofan engine. Electronics 10(3), 285. DOI: 10.3390/electronics10030285.
- Willmott, C.J. & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30(1), 79-82. DOI: 10.3354/cr030079.
- Varvel, J.R., Donoho, D.L. & Shafer, S.L. (1992). Measuring the predictive performance of computer-controlled infusion pumps. Journal of Pharmacokinetics and Biopharmaceutics 20, 63-94. DOI: 10.1007/BF01143186.
- Khumla, P., Sarawan, K., Polpinij, J., Gonwirat, S., Chantima, P. & Sommool, W. (2024, June). Analyzing Machine Learning Techniques for Air Passenger Numbers Forecasting. In 2024 21st International Joint Conference on Computer Science and Software Engineering (JCSSE) (pp. 107-112). IEEE. DOI: 10.1109/JCSSE61278.2024.10613714.
- Štefancová, V., Harantová, V., Mazanec, J., Mašek, J. & Foltýnová, H.B. (2023). Analysis of Passenger Behaviour During the Covid-19 Pandemic Situation. LOGI–Scientific Journal on Transport and Logistics 14(1), 203-214. DOI: 10.2478/logi-2023-0019.