References
- Tillman, F.A. & Cain, T.M. (1972). An Upper bound Algorithm for the Single and Multiple Terminal Delivery Problem. Management Science 18(11), 589-721. DOI: 10.1287/mnsc.18.11.664.
- Cook, W.J. (2014). In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation. USA: Princeton University Press.
- Bulíček, J. & Mondek, N. (2018). Changes in the traffic situation on city roads after traffic diversion outside the city. In International conference on traffic and transport engineering, 27-28 September 2018 (pp.1064-1072). Belgrade. Serbia: City Net Scientific Research Center Ltd. Belgrade.
- Dvořák, Z., Řehák, D., Radimský, M. & Hromada, M. (2019). Dynamic Impact Modelling as a Road Transport Crisis Management Support Tool. Administrative Sciences 9(2), 1-16. DOI: 10.3390/admsci9020029.
- Clarke, G. & Wright, J.V. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research 12(4), 568-581. DOI: 10.1287/opre.12.4.568.
- Nuriyev, U., Ugurlu, O. & Nuriyeva, F. (2018). A simple algorithm for the multi-depot multiple traveling salesman problem. In: 6Th International Conference on Control and Optimalization with Industrial Application, 11-13 Jul 2018. Baku, Azerbaijan.
- Russell, R., Chiang, W.Ch. & Zepeda, D. (2008). Integrating multi-product production and distribution in newspaper logistics. Computers & Operations Research 35(5), 1576-1588. DOI: 10.1016/j.cor.2006.09.002.
- Doyuran, T. & Catay, B. (2011). A robust enhancement to the Clarke-Wright savings algorithm. Journal of the Operational Research Society 62(1), 223-231. DOI: 10.1057/jors.2009.176.
- Nehezova, T.S. & Hlavaty, R. (2022). Robust Optimization Approach in Travelling Salesman Problem with Service Time. In: Proceedings of the 40Th International Conference Mathematical Methods in Economics, 07-09 September 2022. Jihlava, Czech Republic.
- Altinel, K. & Öncan, T.A. (2005). New Enhancement of the Clarke and Wright Savings Heuristic for the Capacitated Vehicle Routing Problem. The Journal of the Operational Research Society 56(8), 954-961. DOI:/10.1057/palgrave.jors.2601916.
- Juan, A.A., Faulin, J., Ruben, R., Barrios, B. & Caballe, S. (2010). The SR-GCWS hybrid algorithm for solving the capacitated vehicle routing problem. Applied Soft Computing Journal 10(1), 215-224. DOI: 10.1016/j.asoc.2009.07.003.
- Juan, A.A., Faulin, J., Jorba, D., Riera, D., Masip, D. & Barrios, B. (2011). On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics. The Journal of the Operational Research Society 62(6), 1085-1097. DOI: 10.1057/jors.2010.29.
- Dorigo, M. & Stutzle, T. (2004). Ant Colony Optimization. A Bradford Book. Massachusetts Institute of Technology.
- Ji, Y., Yang, H. & Zhou, Y. (2015). Vehicle routing problem with simultaneous delivery and pickup for cold-chain logistics. In Proceedings of the 2015 International Conference on Modelling, Simulation and Applied Mathematics, 23-24 August 2015 (pp. 412-425). Phuket, Thailand: Atlantis Press.
- Huang, Z., Huang, W. & Guo, F. (2019). Integrated sustainable planning of self-pickup and door-to-door delivery service with multi-type stations. Computers & Industrial Engineering 135, 412-425. DOI: 10.1016/j.cie.2019.06.022.
- Berghida, M. & Boukra, A. (2015). Resolution of a vehicle routing problem with simultaneous pickup and delivery. International Journal of Applied Metaheuristic Computing 6(3), 53-68. DOI: 10.4018/ijamc.2015070103.
- Pan, X.Y., Wu, J., Zhang, W.Q., Lai, D. & Zhang, D. (2013). A hybrid algorithm for the scheduling of vehicles with simultaneous pickups and deliveries. Applied Mechanics and Materials 475-476, 733-736. DOI: 10.4028/www.scientific.net/amm.475-476.733.
- Struwing, C.B., Ruthven, G.A. & Leipzig, K. (2013). The application of design criteria for locating a hub configured supply chain for a restaurant cluster in the Stellenbosch Area. Journal of Transport and Supply Chain Management 7(1), 1-7. DOI: 10.4102/jtscm.v7i1.90.
- Gunawan, A., Widjaja, A.T., Vantseewengen, P. & Yu, V.F. (2021). Two-phase Metaheuristic for the vehicle routing problem with reverse cross docking. Annals of Mathematics and Artificial Intelligence 90, 915-949. DOI: 10.1007/s10472-021-09753-3.
- Ali, O., Côte, J.F. & Coelho, C.L. (2021). Models and algorithms for the delivery and installation routing problem. European Journal of Operational Research 291(1), 162-177. DOI: 10.1016/j.ejor.2020.09.011.
- Destyanto, A.R., Fajar, N.F., Mandhasiya, D.G., Mansur, F.A., Masyhur, M.Z., Aji, N.A. & Bramasta, R.R. (2019). Improving service level and utilization of distribution using discrete event simulation by comparing three vehicle routing problem algorithms: A case study of drugs distribution company. In: AIP Conference Proceedings, 22-24 July 2019. Padang, Indonesia. DOI:10.1063/5.0001058.
- Li, D., Cao, Q., Zuo, M. & Xu, F. (2020). Optimization of Green Fresh Food Logistics with Heterogeneous Fleet Vehicle Route Problem by Improved Genetic Algorithm. Sustainability 12(5). DOI: 10.3390/su12051946.
- Dvořák, Z., Řehák, D., David, A. & Cerekevac, Z. (2020). Qualitative Approach to Environmental Risk Assessment in Transport. International Journal of Environmental research and Public Health 17(15), 5494. DOI: 10.3390/ijerph17155494.
- UNECE. (2022). Agreement on the International Carriage of Perishable Foodstuffs and on the Special Equipment to be Used for such Carriage (ATP): As Amended on 1 June 2022. Retrieved October 7, 2023, from https://unece.org/sites/default/files/2022-05/2201321E_pdf_web%20with%20corrections_protected.pdf
- DIGITECH ČR. (2020) Plantour. Retrieved October 16, 2023, from https://www.digitech.cz
- Rinkai. (2023). We’re the developers of optimisation tool RINKAI ROUTING. Retrieved November 3, 2023, from https://www.rinkai.cz/en
- Solvertech (2023). Tasha. Retrieved November 3, 2023, from https://solvertech.cz/produkty/tasha
- Solvertech. (2023). Kira. Retrieved November 3, 2023, from https://solvertech.cz/produkty/kira