References
- Hu, X., Waller, L.A., Al-Hamdan, M.Z., Crosson, W.L., Estes Jr, M.G., Estes S.M. & Liu, Y. (2013). Estimating ground-concentration PM2.5 concentrations in the southeastern US using geographically weighted regression. Environmental Research 121, 1-10. DOI: 10.1016/j.envres.2012.11.003.
- Adams, K., Greenbaum, D.S., Shaikh, R., Erp van, A.M. & Russell, A.G. (2015). Particulate matter components, sources, and health: Systematic approaches to testing effects. Journal of the Air & Waste Management Association 65(5), 544-558. DOI: 10.1080/10962247.2014.1001884.
- Esworthy, R. & McCarthy, J.E. (2013). The National Ambient Air Quality Standards (NAAQS) for Particulate Matter (PM): EPA’s 2006 Revisions and Associated Issues: Library of Congress, Congressional Research Service. DOI: 10.4135/9781412956260.n551.
- Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P. & Sommer, H. (2000). Public-health impact of outdoor and traffic-related air pollution: a European assessment. The Lancet 356(9232), 795-801. DOI: 10.1016/s0140-6736(00)02653-2.
- Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P. & Brandt, P.A. (2003). Mortality and indicators of traffic-related air pollution. The Lancet 361(9355), 430. DOI: 10.1016/s0140-6736(03)12403-8.
- Veselík, P., Sejkorová, M., Nieoczym, A. & Caban, J. (2020). Outlier identification of concentrations of pollutants in environmental data using modern statistical methods. Polish Journal of Environmental Studies 29(1). DOI: 10.15244/pjoes/112620.
- Ameen, M.H., Jumaah, H.J., Kalantar, B., Ueda, N., Halin, A.A., Tais, A.S. & Jumaah, S.J. (2021). Evaluation of PM2.5 particulate matter and noise pollution in Tikrit University based on GIS and statistical modeling. Sustainability 13(17), 9571. DOI: 10.3390/su13179571.
- Murray, N.L., Holmes, H.A., Liu, Y. & Chang, H.H. (2019). A Bayesian ensemble approach to combine PM2.5 estimates from statistical models using satellite imagery and numerical model simulation. Environmental research 178, 108601. DOI: 10.1016/j.envres.2019.108601.
- Geng, G., Zheng, Y., Zhang, Q., Xue, T., Zhao, H., Tong, D. & Davis, S.J. (2021). Drivers of PM2.5 air pollution deaths in China 2002–2017. Nature Geoscience 14(9), 645-650. DOI: 10.1038/s41561-021-00792-3.
- Marsha, A. & Larkin, N.K. (2019). A statistical model for predicting PM2.5 for the western United States. Journal of the Air & Waste Management Association 69(10), 1215-1229. DOI: 10.1080/10962247.2019.1640808.
- Lafferty, J. & Wasserman, L. (2006). Challenges in statistical machine learning. Statistica Sinica 16(2), 307. Retrieved October 22, 2023, from https://www3.stat.sinica.edu.tw/statistica/j16n2/editorial3.pdf
- Makridakis, S., Spiliotis, E., Assimakopoulos, V., Semenoglou, A.A., Mulder, G. & Nikolopoulos, K. (2023). Statistical, machine learning and deep learning forecasting methods: Comparisons and ways forward. Journal of the Operational Research Society 74(3), 840-859. DOI: 10.1080/01605682.2022.2118629.
- Dastile, X., Celik, T. & Potsane, M. (2020). Statistical and machine learning models in credit scoring: A systematic literature survey. Applied Soft Computing 91, 106263. DOI: 10.1016/j.asoc.2020.106263.
- Ilyassov, D.K., Kitapova, K. & Kenc, T. (2023). Overview and advantages of Machine Learning (ML) in Statistics. Bulletin of the Karaganda University Economy series 109(1), 59-66. DOI: 10.31489/2023ec1/59-66.
- Małek, A., Caban, J., Dudziak, A., Marciniak, A. & Vrábel, J. (2023). The Concept of Determining Route Signatures in Urban and Extra-Urban Driving Conditions Using Artificial Intelligence Methods. Machines 11(5), 575. DOI: 10.3390/machines11050575.
- Karimian, H., Li, Q., Wu, C., Qi, Y., Mo, Y., Chen, G. & Sachdeva, S. (2019). Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol and Air Quality Research 19(6), 1400-1410. DOI: 10.4209/aaqr.2018.12.0450.
- Ma, J., Yu, Z., Qu, Y., Xu, J. & Cao, Y. (2020). Application of the XGBoost machine learning method in PM2.5 prediction: A case study of Shanghai. Aerosol and Air Quality Research 20(1), 128-138. DOI: 10.4209/aaqr.2019.08.0408.
- Masood, A. & Ahmad, K. (2020). A model for particulate matter (PM2. 5) prediction for Delhi based on machine learning approaches. Procedia Computer Science 167, 2101-2110. DOI: 10.1016/j.procs.2020.03.258.
- Kinney, P.L., Gichuru, M.G., Volavka-Close, N., Ngo, N., Ndiba, P.K., Law, A. & Sclar, E. (2011). Traffic impacts on PM2.5 air quality in Nairobi, Kenya. Environmental science & policy 14(4), 369-378. DOI: 10.1016/j.envsci.2011.02.005.
- Kursa, M.B. & Rudnicki, W.R. (2010). Feature selection with the Boruta package. Journal of Statistical Software 36, 1-13. DOI: 10.18637/jss.v036.i11.
- Anand, N., Sehgal, R., Anand, S. & Kaushik, A. (2021). Feature selection on educational data using the Boruta algorithm. International Journal of Computational Intelligence Studies 10(1), 27-35. DOI: 10.1504/ijcistudies.2021.113826.
- Subbiah, S., Anbananthen, K.S.M., Thangaraj, S., Kannan, S. & Chelliah, D. (2022). Intrusion detection technique in wireless sensor network using grid search random forest with Boruta feature selection algorithm. Journal of Communications and Networks 24(2), 264-273. DOI: 10.23919/JCN.2022.000002.
- Leong, L.K. & Abdullah, A.A. (2019). Prediction of Alzheimer’s disease (AD) using machine learning techniques with Boruta algorithm as feature selection method. Journal of Physics: Conference Series 1372(1), 012065. DOI: 10.1088/1742-6596/1372/1/012065.
- Chen, T. & Guestrin, C. (2016). Xgboost: A scalable tree-boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 13–17 August 2016 (pp. 785-794). San Francisco, California USA: Association for Computing Machinery, New York, United States.
- Biau, G. & Scornet, E. (2016). A random forest-guided tour. Test 25, 197-227. DOI: 10.1007/s11749-016-0481-7.
- Bhati, B.S. & Rai, C.S. (2020). Ensemble-based approach for intrusion detection using extra tree classifier. In Intelligent Computing in Engineering: Select Proceedings of RICE 2019, 213-220. Springer Singapore. DOI: 10.1007/978-981-15-2780-7_25.
- Mucherino, A., Papajorgji, P.J., Pardalos, P.M., Mucherino, A., Papajorgji, P.J. & Pardalos, P.M. (2009). K-nearest neighbor classification. Data mining in agriculture 83-106. DOI: 10.1007/978-0-387-88615-2_4.
- Huang, Y. & Li, L. (2011). Naive Bayes classification algorithm based on a small sample set in 2011 IEEE International conference on cloud computing and intelligence systems, 15-17 September 2011 (pp. 34-39). Beijing, China: Institute of Electrical and Electronics Engineers.
- King, J.E. (2008). Binary logistic regression: Best practices in quantitative methods 358-384, 2008. DOI: 10.4135/9781412995627.d29.
- Amiri, M., Pourghasemi, H.R., Ghanbarian, G.A. & Afzali, S.F. (2019). Assessment of the importance of gully erosion effective factors using the Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms. Geoderma 340, 55-69. DOI: 10.1016/j.geoderma.2018.12.042.
- Zhang, L., Ji, Y., Liu, T. & Li, J. (2020). PM2.5 Prediction Based on XGBoost. In 2020 7th International Conference on Information Science and Control Engineering, 18-20 December 2020 (pp. 1011-1014). Changsha, China: Institute of Electrical and Electronics Engineers.
- Peng, J., Han, H., Yi, Y., Huang, H. & Xie, L. (2022). Machine learning and deep learning modeling and simulation for predicting PM2.5 concentrations. Chemosphere 308, 136353. DOI: 10.1016/j.chemosphere.2022.136353.
- Gokul, P.R., Mathew, A., Bhosale, A. & Nair, A.T. (2023). Spatio-temporal air quality analysis and PM2.5 predictions over Hyderabad City, India using artificial intelligence techniques. Ecological Informatics 76, 102067.DOI: 10.1016/j.ecoinf.2023.102067.