Have a personal or library account? Click to login
Analysis of Passenger Behaviour During the Covid-19 Pandemic Situation Cover

References

  1. Chan, H.F., Skali, A., Savage, D.A., Stadelmann, D. & Torgler, B. (2020). Risk attitudes and human mobility during the COVID-19 pandemic. Scientific Reports 10, 19931. DOI: 10.1038/s41598-020-76763-2.
  2. Hájnik, A., Čulík, K., Kalašová, A. & Kubíková, S.S. (2021). A statistical value of human life in Slovakia. In 14th International Scientific Conference on Sustainable, Modern and Safe Transport - TRANSCOM 2021, 26-28 May 2021 (pp. 284-290). Virtual. DOI: 10.1016/j.trpro.2021.06.032.
  3. Bulková, Z., Dedík, M., Štefancová, V. & Gašparík, J. (2022). Proposal of the systematic measures to support rail passenger transport during the pandemic period. In 26th International Scientific Conference Transport Means 2022, 5-7 October 2022 (pp. 378-383). Kaunas, Virtual.
  4. Xiong, C., Hu, S., Yang, M., Luo, W. & Zhang, L. (2020). Mobile device data reveal the dynamics of a positive relationship between human mobility and COVID-19 infections. Proceedings of the National Academy of Sciences USA 117(44), 27087–27089. DOI: 10.1073/pnas.2010836117.
  5. Monterde-i-Bort, H., Sucha, M., Risser, R. & Kochetova, T. (2022). Mobility patterns and mode choice preferences during the COVID-19 situation. Sustainability 14(2), 768. DOI: 10.3390/su14020768.
  6. Arimura, M., Ha, T.V., Okumura, K. & Asada, T. (2020). Changes in urban mobility in Sapporo city, Japan due to the Covid-19 emergency declarations. Transportation research interdisciplinary perspectives 7, 100212. DOI: 10.1016/j.trip.2020.100212.
  7. Schmidt, K., Sieverding, T., Wallis, H. & Matthies, E. (2021). COVID-19–A window of opportunity for the transition toward sustainable mobility? Transportation Research Interdisciplinary Perspectives 10, 100374. DOI: 10.1016/j.trip.2021.100374.
  8. Baig, F., Kirytopoulos, K., Lee, J., Tsamilis, E., Mao, R. & Ntzeremes, P. (2022). Changes in People’s Mobility Behavior in Greece after the COVID-19 Outbreak. Sustainability 14(6), 3567. DOI: 10.3390/su14063567.
  9. Kłos-Adamkiewicz, Z. & Gutowski, P. (2022). The Outbreak of the COVID-19 Pandemic in Relation to Sense of Safety and Mobility Changes in Public Transport Using the Example of Warsaw. Sustainability 14(3), 1780. DOI: 10.3390/su14031780.
  10. Kim, J. & Kwan, M.P. (2021). The impact of the COVID-19 pandemic on people’s mobility: A longitudinal study of the US from March to September of 2020. Journal of Transport Geography 93, 103039. DOI: 10.1016/j.jtrangeo.2021.103039.
  11. Zafri, N.M., Khan, A., Jamal, S. & Alam, B.M. (2022). Risk perceptions of COVID-19 transmission in different travel modes. Transportation research interdisciplinary perspectives 13, 100548. DOI: 10.1016/j.trip.2022.100548.
  12. Ku, D., Um, J., Byon, Y., Kim, J. & Lee, S. (2021). Changes in passengers’ travel behavior due to covid-19. Sustainability (Basel, Switzerland) 13(14), 7974. DOI: 10.3390/su13147974.
  13. Bohman, H., Ryan, J., Stjernborg, V. & Nilsson, D. (2021). A study of changes in everyday mobility during the Covid-19 pandemic: As perceived by people living in Malmö, Sweden. Transport policy 106, 109-119. DOI: 10.1016/j.tranpol.2021.03.013.
  14. Simovic, S., Ivanisevic, T., Bradic, B., Cicevic, S. & Trifunovic, A. (2021). What causes changes in passenger behavior in south-east Europe during the COVID-19 pandemic? Sustainability (Basel, Switzerland) 13(15), 8398. DOI: 10.3390/su13158398.
  15. Aghdam, F.B., Sadeghi-Bazargani, H., Shahsavarinia, K., Jafari, F., Jahangiry, L. & Gilani, N. (2021). Investigating the COVID-19 related behaviors in the public transport system. Archives of Public Health (Archives Belges De Santé Publique) 79(1), 1-183. DOI: 10.1186/s13690-021-00702-4.
  16. Mostofi, H. (2021). The Association between ICT-Based Mobility Services and Sustainable Mobility Behaviors of New Yorkers. Energies 14(11), 3064. DOI: 10.3390/en14113064.
  17. Czech, K., Davy, A. & Wielechowski, M. (2021). Does the COVID-19 Pandemic Change Human Mobility Equally Worldwide? Cross-Country Cluster Analysis. Economies 9(4), 182. DOI: 10.3390/economies9040182.
  18. Koloushani, M., Ghorbanzadeh, M., Ozguven, E.E. & Ulak, M.B. (2021). Crash patterns in the COVID-19 pandemic: the tale of four Florida counties. Future transportation 1(3), 414-442. DOI: 10.3390/futuretransp1030023.
  19. Sun, S., Folarin, A.A., Ranjan, Y., Rashid, Z., Conde, P., Stewart, C., Cummins, N., Matcham, F., Dalla Costa, G., Simblett, S., Leocani, L., Lamers, F., Sørensen, P.S., Buron, M., Zabalza, A., Guerrero Pérez, A.I., Penninx, B.W., Siddi, S., Haro, J.M., Myin-Germeys, I., Rintala, A., Wykes, T., Dobson, R.JB. & RADAR-CNS Consortium. (2020). Using smartphones and wearable devices to monitor behavioral changes during COVID-19. Journal of medical Internet research 22(9), 19992. DOI: 10.2196/19992.
  20. MacFarland, T.W. & Yates, J.M. (2016). Kruskal–Wallis H-Test for Oneway Analysis of Variance (ANOVA) by Ranks. Introduction to Nonparametric Statistics for the Biological Sciences Using R, Springer International Publishing, 177–211. DOI: 10.1007/978-3-319-30634-6_6.
  21. McKight, P.E. & Najab, J. (2010). Kruskal-Wallis Test. The Corsini Encyclopedia of Psychology 1, 1-10. DOI: 10.1002/9780470479216.corpsy0491.
  22. Tkaczynski, A. (2017). Segmentation using two-step cluster analysis. Segmentation in social marketing, Springer, Singapore, 109-125. DOI: 10.1007/978-981-10-1835-0_8.
  23. Sherwani, R.A.K., Shakeel, H., Awan, W.B., Faheem, M. & Aslam, M. (2021). Analysis of COVID-19 data using neutrosophic kruskal wallis H test. BMC Medical Research Methodology 21(1), 1-215. DOI: 10.1186/s12874-021-01410-x.
  24. Orîndaru, A., Popescu, M.F., Alexoaei, A.P., Căescu, Ș.C., Florescu, M.S. & Orzan, A.O. (2021). Tourism in a post-COVID-19 era: Sustainable strategies for industry’s recovery. Sustainability 13(12), 6781. DOI: 10.3390/su13126781.
  25. Hansson, J., Pettersson, F., Svensson, H. & Wretstrand, A. (2019). Preferences in regional public transport: a literature review. European Transport Research Review 11(1), 1-16. DOI: 10.1186/s12544-019-0374-4.
  26. Borkowski, P., Jażdżewska-Gutta, M. & Szmelter-Jarosz, A. (2021). Lockdown: Everyday mobility changes in response to COVID-19. Journal of Transport Geography 90, 102906. DOI: 10.1016/j.jtrangeo.2020.102906.
  27. Sadeghi, S., Daziano, R., Yoon, S.Y. & Anderson, A.K. (2022). Crowding and perceived travel time in public transit: virtual reality compared with stated choice surveys. Transportation Research Record 0(0). DOI: 10.1177/03611981221130346.
  28. Shubenkova, K. & Makarova, I. (2018). Evaluation of the actions aimed at the transition to sustainable public transport system. The Archives of Automotive Engineering – Archiwum Motoryzacji 81(3), 75-90. DOI: 10.14669/AM.VOL81.ART6.
  29. Yeboah, G., Cottrill, C.D., Nelson, J.D., Corsar, D., Markovic, M. & Edwards, P. (2019). Understanding factors influencing public transport passengers’ pre-travel information-seeking behaviour. Public Transport 11(1), 135-158. DOI: 10.3141/2274-1.
  30. McMullan, A. & Majumdar, A. (2012). Assessing the impact of travel path choice on London’s rail network using an automatic fare collection system. Transportation research record 2274(1), 154-163. DOI: 10.3141/2274-17.
  31. Urbanek, A. (2019). Public transport fares as an instrument of impact on the travel behaviour: an empirical analysis of the price elasticity of demand. In TranSopot Conference, 28-30 May 2018, (101-113). Sopot, Poland. Springer, Cham. DOI: 10.1007/978-3-030-17743-0_9.
  32. Eisenmann, C., Nobis, C., Kolarova, V., Lenz, B. & Winkler, C. (2021). Transport mode use during the COVID-19 lockdown period in Germany: the car became more important, and public transport lost ground. Transport Policy 103, 60-67. DOI: 10.1016/j.tranpol.2021.01.012.
  33. Holmgren, J. (2007). Meta-analysis of public transport demand. Transportation Research Part A-Policy and Practice 41 (10), 1021-1035. DOI: 0.1016/j.tra.2007.06.003.
  34. Tarasi, D., Daras, T., Tournaki, S. & Tsoutsos, T. (2021). Transportation in the Mediterranean during the COVID-19 pandemic era. Global transitions 3, 55-71. DOI: 10.1016/j.glt.2020.12.003.
  35. Redman, L., Friman, M., Gärling, T. & Hartig, T. (2013). Quality attributes of public transport that attract car users: A research review. Transport policy 25, 119-127. DOI: 10.1016/j.tranpol.2012.11.005.
  36. Das, S., Boruah, A., Banerjee, A., Raoniar, R., Nama, S. & Maurya, A.K. (2021). Impact of COVID-19: A radical modal shift from public to private transport mode. Transport Policy 109, 1-11. DOI: 10.1016/j.tranpol.2021.05.005.
  37. Abdullah, M., Dias, C., Muley, D. & Shahin, M. (2020). Exploring the impacts of COVID-19 on travel behavior and mode preferences. Transportation research interdisciplinary perspectives 8, 100255. DOI: 10.1016/j.trip.2020.100255.
  38. Wang, X., Sun, S., Zhang, B. & Han, J. (2021). Solar heating to inactivate thermal-sensitive pathogenic microorganisms in vehicles: Application to COVID-19. Environmental Chemistry Letters 19, 1765–1772. DOI: 10.1007/s10311-020-01132-4.
  39. Przybylowski, A., Stelmak, S. & Suchanek, M. (2021). Mobility Behaviour in View of the Impact of the COVID-19 Pandemic - Public Transport Users in Gdansk Case Study. Sustainability 13, 364. DOI: 10.3390/su13010364.
Language: English
Page range: 203 - 214
Submitted on: Jan 24, 2023
|
Accepted on: Feb 9, 2023
|
Published on: May 23, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Vladimíra Štefancová, Veronika Harantová, Jaroslav Mazanec, Jaroslav Mašek, Hana Brůhová Foltýnová, published by Institute of Technology and Business in České Budějovice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.