Have a personal or library account? Click to login
Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe Cover

Examination of the Development of New Bus Registrations with Alternative Powertrains in Europe

Open Access
|Oct 2021

References

  1. [1] European Commission. (2011, March). White paper - Roadmap to a Single European Transport Area - Towards a Competitive and Resource Efficient Transport System. Retrieved March 27, 2020, from https://eur-lex.europa.eu/legal-content/SK/TXT/PDF/?uri=CELEX:52011DC0144&from=SK
  2. [2] European Parliament. (2019, June). Directive (EU) 2019/1161 of the European parliament and of the council of 20 June 2019 amending Directive 2009/33/EC on the promotion of clean and energy-efficient road transport vehicles. Retrieved December 16, 2020, from https://eurlex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019L1161&qid=1610109503291&from=SK
  3. [3] Ľupták, V., Hlatká, M. & Kampf, R. (2018). Energy consumption and greenhouse gases emissions on relation Brno-Jihlava. Paper presented at the MATEC Web of Conferences, 235. DOI:10.1051/matecconf/201823500011.10.1051/matecconf/201823500011
  4. [4] Rybicka, I., Stopka, O., Ľupták, V., Chovancová, M. & Droždziel, P. (2018). Application of the methodology related to the emission standard to specific railway line in comparison with parallel road transport: A case study. Paper presented at the MATEC Web of Conferences, 244. DOI:10.1051/matecconf/201824403002.10.1051/matecconf/201824403002
  5. [5] Chang, Ch., Liao, Y. & Chang, Y. (2019). Life cycle assessment of alternative energy types e including hydrogen e for public city buses in Taiwan. ScienceDirect. International Journal of Hydrogen Energy 44, 18472-18482. DOI: 10.1016/j.ijhydene.2019.05.073.10.1016/j.ijhydene.2019.05.073
  6. [6] Correa, G., Munoz, P.M. & Rodriguez, C.R. (2019). A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus. Energy 187, 115906. DOI: 10.1016/j.energy.2019.115906.10.1016/j.energy.2019.115906
  7. [7] Ľupták, V., Stopková, M. & Jeřábek, K. (2019). Comparative analysis in terms of environmental impact assessment between railway and road passenger transport operation: A case study. Paper presented at the Transport Means - Proceedings of the International Conference, October 2019 (pp. 1330-1334).
  8. [8] Mutter, A. (2019). Obduracy and Change in Urban Transport - Understanding Competition Between Sustainable Fuels in Swedish Municipalities. Sustainability 11(21):6092. DOI: 10.3390/su11216092.10.3390/su11216092
  9. [9] Rupp, M., Handschuh, N., Rieke, CH. & Kuperjans, I. (2019). Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany. Applied Energy 237, 618-634. DOI: 10.1016/j.apenergy.2019.01.059.10.1016/j.apenergy.2019.01.059
  10. [10] Islam, A. & Lownes, N. (2019). When to go electric? A parallel bus fleet replacement study. Transportation Research Part D 72, 299-311. DOI: 10.1016/j.trd.2019.05.007.10.1016/j.trd.2019.05.007
  11. [11] Csiszár, C., Csonka, B., Földes, D., Wirth, E. & Lovas, T. (2019). Urban public charging station locating method for electric vehicles based on land use approach. J. Transp. Geogr. 2019, 74, 173–180. DOI: 10.1016/j.jtrangeo.2018.11.016.10.1016/j.jtrangeo.2018.11.016
  12. [12] Gallet, M., Massier, T. & Hamacher, T. (2018). Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks. Applied Energy 230, 344-356. DOI: 10.1016/j.apenergy.2018.08.086.10.1016/j.apenergy.2018.08.086
  13. [13] Hamurcu, M. & Eren, T. (2020). Electric Bus Selection with Multicriteria Decision Analysis for Green Transportation. Sustainability 12(7):2777. DOI: 10.3390/su12072777.10.3390/su12072777
  14. [14] Xu, X. & Han, L. (2020). Operational Lifecycle Carbon Value of Bus Electrification in Macau. Sustainability 12(9):3784. DOI: 10.3390/su12093784.10.3390/su12093784
  15. [15] Peng, J., Jiang, J., Ding, F. & Tan, H. (2020). Development of Driving Cycle Construction for Hybrid Electric Bus: A Case Study in Zhengzhou, China. Sustainability 12(17):7188. DOI: 10.3390/su12177188.10.3390/su12177188
  16. [16] Blaž, J., Zupan, S. & Ambrož, M. (2019). Study on the Eligibility of Introducing Hybrid-Drive Buses into the Public Passenger Transport. Stroj. Vestn. J. Mech. Eng. 65, 12–20. DOI: 10.5545/sv-jme.2018.5637.10.5545/sv-jme.2018.5637
  17. [17] Harris, A., Soban, D., Smyth, B.M. & Best, R. (2018). Assessing life cycle impacts and the risk and uncertainty of alternative bus technologies. Renewable and Sustainable Energy Reviews 97, 569-579. DOI: 10.1016/j.rser.2018.08.045.10.1016/j.rser.2018.08.045
  18. [18] Ivkovic, I., Kaplanovic, S. & Sekulic, D. (2019). Analysis of External Costs of CO2 Emissions For CNG Buses in Intercity Bus Service. TRANSPORT 34(5), 529-538. DOI: 10.3846/transport.2019.11473.10.3846/transport.2019.11473
  19. [19] Gustafsson, M., Svensson, N. & Anderberg, S. (2018). Energy performance indicators as policy support for public bus transport – The case of Sweden. Transportation Research Part D (65), 697-709. DOI: 10.1016/j.trd.2018.10.008.10.1016/j.trd.2018.10.008
  20. [20] Brdulak, A., Chaberek, G. & Jagodziński, J. (2020). Development Forecasts for the Zero-Emission Bus Fleet in Servicing Public Transport in Chosen EU Member Countries. Energies 13(16):4239. DOI: 10.3390/en13164239.10.3390/en13164239
  21. [21] Konečný, V., Gnap, J., Settey, T., Petro, F., Skrúcaný, T. & Figlus T. (2020). Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe. Energies. 13(15):3869. DOI: 10:3390/en/13153869.10.3390/en13153869
  22. [22] Saz-Salazar, S., Feo-Valero, M. & Vazquez-Paja, B. (2020). Valuing public acceptance of alternative-fuel buses using a Latent Class Tobit model: A case study in Valencia. Journal of Cleaner Production 261, 121-199. DOI: 10.1016/j.jclepro.2020.121199.10.1016/j.jclepro.2020.121199
  23. [23] Gnap, J., Konečný, V. & Poliak, M. (2006). Demand elasticity of public transport. Ekon. Cas. 2006, 54, 667–684. Retrieved November 16, 2020, from https://www.researchgate.net/publication/292548426_Demand_elasticity_of_public_transport
  24. [24] Poliak, M., Poliaková, A., Mrníková, M., Šimurková, P., Jaskiewicz, M. & Rafał, J. (2017). The Competitiveness of Public Transport. J. Compet. 81(9). DOI: 10.744/joc.2017.03.06.
  25. [25] Konečný, V. & Bridzíková, M. (2020). The Impact of the State of Emergency on the Supply of Services and Passenger Demand for Public Transport. LOGI – Scientific Journal on Transport and Logistics. 11(2), 56-65. DOI: 10.2478/logi-2020-0015.10.2478/logi-2020-0015
  26. [26] Ministry of Interior of the Slovak Republic (2020, October). Central Register of Vehicles of the Slovak Republic. Retrieved October 14, 2020.
  27. [27] Polish Association of Automotive Industry, Warsaw. First registrations of new buses January to October 2020. Retrieved November 26, 2020.
  28. [28] European Automobile Manufacturers Association. (2020, April). Medium and heavy buses (over 3.5 t) new registrations by fuel type in the European Union. Retrieved January 7, 2021, from https://www.acea.be/uploads/press_releases_files/ACEA_buses_by_fuel_type_full-year_2019.pdf
  29. [29] European Automobile Manufacturers Association. (2019, December). Vehicles in use Europe 2019. Retrieved December 18, 2020, from https://www.acea.be/uploads/publications/ACEA_Report_Vehicles_in_use-Europe_2019.pdf
  30. [30] Eurostat. (2020, March). New registrations of motor coaches, buses and trolley buses by type of motor energy. Retrieved December 18, 2020, from https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=road_eqr_busmot&lang=en
  31. [31] European Automobile Manufacturers Association. (2020, November). New commercial vehicle registrations European Union. Retrieved January 07, 2021, from https://www.acea.be/uploads/press_releases_files/20201222_PRCV_2011_FINAL.pdf
  32. [32] Eurostat. (2021, January). GDP and main components (output, expenditure and income). Retrieved January 04, 2021, from https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nama_10_gdp&lang=en
  33. [33] Šulyová, D., Vodák, J. & Koman, G. (2020). Implementation Smart City Concepts for Mobility, Case Study of World Logistic Models on the Smart Principles. LOGI – Scientific Journal on Transport and Logistics. 11(2), 110-119. DOI: 10.2478/logi-2020-0020.10.2478/logi-2020-0020
  34. [34] Stopka, O., Zitricky, V., Abramovic, A., Marinov, M. & Ricci, S. (2019). Innovative Technologies for Sustainable Passenger Transport. Hindawi J. Adv. Transp., 2019, 4197246. DOI: 10.1155/2019/4197246.10.1155/2019/4197246
  35. [35] Lupták, V., Drozdziel, P., Stopka, O., Stopková, M. & Rybicka, I. (2019). Approach Methodology for Comprehensive Assessing the Public Passenger Transport Timetable Performances at a Regional Scale. Sustainability 1, DOI: 10.3390/su11133532.10.3390/su11133532
Language: English
Page range: 147 - 158
Submitted on: Jan 18, 2021
Accepted on: Jun 10, 2021
Published on: Oct 26, 2021
Published by: Institute of Technology and Business in České Budějovice
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Jozef Gnap, Marek Dočkalik, Grzegorz Dydkowski, published by Institute of Technology and Business in České Budějovice
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.