References
- Grilli, M. L. “Metal oxides,” Metals, 2020, 10 (6): p. 1–3, doi: 10.3390/met10060820.
- Ren, B., Wang, Y. and Ou, J. Z. “Engineering two-dimensional metal oxides via surface functionalization for biological applications,” Mater. Chem. B, 2020, doi: 10.1039/C9TB02423A.
- Mohammad, M. K., Syed, F. A. and Abdullah, A. “Metal oxides as photocatalysts,” J. Saudi Chem. Soc., 2015, 19: p. 462–464, doi: 10.1016/j.jscs.2015.04.003.
- Gouda, M. and Abd El-Lateef, H.M. “Novel cellulose derivatives containing metal (Cu, Fe, Ni) oxide nanoparticles as eco-friendly corrosion inhibitors for C-steel in acidic chloride solutions,” Molecules, 2021, 26 (22), doi: 10.3390/molecules26227006.
- Anjum, M. J. et al. Metal / metal oxide nanoparticles as corrosion inhibitors. Elsevier Inc., 2020, doi: 10.1016/B978-0-12-819359-4.00011-8.
- Xavier, J. R. “Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel,” Mater. Sci. Eng. B, 2020, 260: p. 114639, doi: 10.1016/j.mseb.2020.114639.
- Iqbal, A. et al. “Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides,” Catalysts, 2021, 11 (7), doi: 10.3390/catal11070806.
- Islam, R. et al. “Modulating Mn-doped NiO nanoparticles: structural, optical and electrical property tailoring for enhanced hole transport layers,” Nanoscale Adv., 2024, doi: 10.1039/d4na00708e.
- Barzinjy, A. A. et al. “Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation,” J. Mater. Sci. Mater. Electron., 2020, 31(14): p. 11303–11316, doi: 10.1007/s10854-020-03679-y.
- Panigrahi, U.K. “Effect of Mg doping on the improvement of photoluminescence and magnetic properties of NiO nanoparticles,” Nano Express, 2020, 1 (2), doi: 10.1088/2632-959X/aba285.
- Deshpande, M.P., et al. “Structural, thermal and optical properties of nickel oxide (NiO) nanoparticles synthesized by chemical precipitation method,” Adv. Mater. Res., 2016, 1141: p. 65–71, doi: 10.4028/www.scientific.net/amr.1141.65.
- Hadi, K. and Al-Saadi, T. M. “Investigating the structural and magnetic properties of nickel oxide nanoparticles prepared by precipitation method,” Ibn AL-Haitham J. Pure Appl. Sci., 2022, 35 (4): p. 94–103, doi: 10.30526/35.4.2872.
- Nakhaeenejad, S. et al. “Enhancing the efficiency of hole-transport-free perovskite solar cells using nickel oxide nanoparticles as a dopant in graphite-based carbon electrodes’’, J. Phys. Chem. Solids, 2024, 189: p. 111958, doi: 10.1016/j.jpcs.2024.111958.
- Zhao, M. et al., “Facile electrolysis-solvothermal synthesis of NiOx/graphene for enhanced ethanol oxidation to acetate,” Dalt. Trans., 2024, 53 (9): p. 4237–4242, doi: 10. 1039/d3dt03963c.
- Dojer, B. and Kristl, J. “Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method,” Heliyon, 2017: p. 1–19, doi: 10.1016/j.heliyon.2017.e00273.
- Fereshteh, Z. et al. “Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor,” J. Clust. Sci., 2012, 23 (2): p. 577–583, doi: 10.1007/s10876-012-0477-8.
- Meher, S.K. Justin, P. and Rao, G. R. “Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide,” ACS Appl. Mater. Interfaces, 2011, 3 (6): p. 2063–2073, doi: 10.1021/am200294k.
- Shalichah, C. and Khumaeni, A. “Synthesis of nickel nanoparticles by pulse laser ablation method using Nd:YAG laser,” J. Phys. Conf. Ser., 2018, 1025 (1), doi: 10.1088/1742-6596/1025/1/012002.
- Olajire, A.A. and Mohammed, A.A. “Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films,” Adv. Powder Technol., 2020, 31 (1): p. 211–218, doi: 10.1016/j.apt.2019.10.012.
- Srihasam, K. et al. “Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties,” Biomolecules, 2020, 10 (1), doi: 10.3390/biom10010089.
- Rifaya, M.N., Theivasanthi, T. and Alagar, M. “Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies,” Nanosci. Nanotechnol., 2012, 2(5): p. 134–138, doi: 10.5923/j.nn.20120205.01.
- Salavati-niasari, M., Davar, F., and Fereshteh, Z.“Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor,” J. Alloys Compd., 2010, 494: p. 410–414, doi: 10.1016/j.jallcom.2010.01.063.
- Danial, A.S. et al. “On the synthesis of nickel oxide nano-particles by sol-gel technique and its electrocatalytic oxidation of glucose,” J. Power Sources, 2018, 293: p. 101–108, doi: 10.1016/j.jpowsour.2015.05.024.
- Hada, R. et al. “A novel synthesis process for making nickel oxide nanoparticles,” Int. Res. J. Pure Appl. Chem., 2013, 3(2): p. 111–117.
- Nathan, T., Aziz, A., Noor, A. F. and Prabaharan, S. R. S. “Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties,” J. Solid State Electrochem., 2008, 12 (7): p. 1003–1009, doi: 10.1007/s10008-007-0465-3.
- Ortega, D. et al. “Phase, size and shape controlled formation of aerosol generated nickel and nickel oxide nanoparticles,” J. Alloys Compd., 2013, 579: p. 495–501, doi: 10.1016/j.jallcom.2013.06.128.
- Sheit, H. M. K. et al. “Enhanced anti-corrosion efficiency and antimicrobial properties of green synthesised nickel oxide (NiO) nanoparticles,” Res. Sq., 2023, p. 1–27.
- Firisa, S. G., Muleta, G. C., and Yimer, A. A. “Synthesis of nickel oxide nanoparticles and copper-doped nickel oxide nanocomposites using Phytolacca Dodecandra l ’ herit leaf extract and evaluation of its antioxidant and photocatalytic activities,” ACS Omega, 2022, 7: p. 44720–44732, doi: 10.1021/acsomega.2c04042.
- Ndukwe, A. I. et al. “Metal corrosion in high temperature conditions: A review,” Zast. Mater., 2025, 65: p. 1–25, doi: 10.62638/ZasMat1203.
- Nwigwe, U. S., Umunakwe, R. and Okon, K. “The inhibition of Carica Papaya leaves extract on the corrosion of cold worked and annealed mild steel in HCl and NaOH solutions using a weight loss technique,” Eng. Appl. Sci. Res., 2019, 46 (2): p. 114–119, 2019, doi: 10.14456/easr.2019.14.
- Ndukwe, A.I., Ozoh, C. C. and Okon, K. “The inhibition of mild steel corrosion by papaya and neem extracts,” Mater. Prot., 2023, 64 (3): p. 274–282, doi: 10.5937/zasmat2303274N.
- Okon, K. et al. “Corrosion inhibition of mild steel and aluminium using extracts of vernonia amygdalina: A review,” Nexus Futur. Mater., 2025, 2 (1): p. 154–166, doi: 10.70128/590516.
- Okon, K., Ayogu, I. I., Azeez, T. O., and Akalezi, C. O. “Artificial neural network modelling of corrosion inhibition of mild steel in marine environment using epoxy-nickel oxide nanocomposite coatings,” World J. Mater. Sci. Technol., 2025, 2 (1):p. 9–26, 2025, doi: https://doi.org/10.11648/j.wjmst.20250201.12.
- Agu, P. C. et al., “Response evaluation of mild steel corrosion rate in H2SO4 to the synegistic influenceof exposure time and steel weight loss,” J. Innov. Res. Eng. Sci., 2025, 6 (1):p. 634–651, 2025, Online: available: https://journals.unizik.edu.ng/joires/about%0AResponse
- Agu, P. C. et al., “Multi-factorial prediction of mild steel exposure time during its corrosion inhibition with Hibiscus Sabdariffa leaf extract in 0.5 M H2SO4,” J. Innov. Res. Eng. Sci., 2025, 6 (1): p. 652–665.
- Okon, K. et al. “Recent advances in the use of metal oxides as corrosion inhibitors: a review,” KOM-Corrosion Mater. Prot. J., 2025, 69: p. 14–33, doi: 10.2478/kom-2025-0003.
- Okon, K. et al. “Recent progress in the application of nickel (nickel oxide nanoparticles) nanocomposites as corrosion inhibitors,” Port. Electrochim. Acta, 2026, 44 (4): p. 267–287, doi: https://doi.org/10.4152/pea.2026440402.
- Okon, K. et al. “ANN Modelling of corrosion inhibition of mild steel in marine environment using epoxy-nickel oxide nanocomposite coatings,” Acad. J. Manuf. Eng., 2025, 23(2): p. 32–42, doi: 10.5281/zenodo.15863489.
- Khodair, Z. T., Khadom, A. A., and Jasim, H. A. “Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: preparation, characterization and mathematical views,” J. Mater. Res. Technol., 2018: p. 1–12, doi: 10.1016/j.jmrt.2018.03.003.
- Ali, A., Chiang, Y. W., and Santos, R. M. “X-ray diffraction techniques for mineral characterization: a review for engineers of the fundamentals, applications, and research directions,” Minerals, 2022, 12 (2), doi: 10.3390/min12020205.
- Fatimah, S., Ragadhita, R., Al Husaeni, D. F., and Nandiyanto, A. B. D. “How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method,” ASEAN J. Sci. Eng., 2022, 2 (1): p. 65–76, doi: 10.17509/ajse.v2i1.37647.
- Dolabella, S., Borzì, A., Dommann, A. and Neels, A. “Lattice strain and defects analysis in nanostructured semi-conductor materials and devices by high-resolution X-ray diffraction: theoretical and practical aspects,” Small Methods, vol. 6, no. 2, 2022, doi: 10.1002/smtd.202100932.
- Cameron, F. H. and Raymond, E. S. “Tutorial on powder X-ray diff raction for characterizing nanoscale materials,” ACS Nano, 2019, doi: 10.1021/acsnano.9b05157.
- Srivastava, P. C. and Srivastava, N. “Realizing NiO nano-crystals from a simple chemical method,” Bull. Mater. Sci., 2010, 33: p. 653–656, doi: 10.1007/s12034-011-0142-0.
- Mohammad, M., Irfan, A. and Mohd, S. “Investigation into the highly efficient Artemisia Absinthium – silver nanoparticles composite as a novel environmentally benign corrosion inhibitor for mild steel in 1M HCl,” J. Adhes. Sci. Technol., 2022: p. 1–26, 2022, doi: 10.1080/01694243.2022.2075523.
- Singh, A. et al., “Structurally and morphologically engineered single-pot biogenic synthesis of NiO nanoparticles with enhanced photocatalytic and antimicrobial activities,” J. Clean. Prod., 2022, 343, doi: 10.1016/j.jclepro.2022.131026.
- Haq, S. et al., “Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus Sativus (R. sativus) extract,” Mater. Res. Express, 2021, 8(5), doi: 10.1088/2053-1591/abfc7c.
- Blanco, I. and Siracusa, V. “The use of thermal techniques in the characterization of bio-sourced polymers,” Materials (Basel)., 2021, 14 (7), doi: 10.3390/ma14071686.
- Majder-Łopatka, M. et al., “Thermal analysis of plastics used in the food industry,” Materials (Basel)., 2022, 15 (1), doi: 10.3390/ma15010248.
- Asyraf, M. R. M. et al., “Thermal properties of oil palm lignocellulosic fibre reinforced polymer composites: a comprehensive review on thermogravimetry analysis”, 2023, 30(5), Springer Netherlands, doi: 10.1007/s10570-023-05080-4.
- Qaiss, K. “Graphene and nanoparticles hybrid nanocompo-sites from preparation to applications”. Composites Science and Technology, 2021, doi: 10.1007/978-981-33-4988-9.
- Sai Revanth, J. et al. “TGA and DSC analysis of vinyl ester reinforced by Vetiveria zizanioides, jute and glass fiber,” Mater. Today Proc., 2019, 26: p. 460–465, doi: 10.1016/j.matpr.2019.12.082.
- Nurazzi, N. M. et al., “Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments,” Polymers (Basel)., 2021, 13 (16), doi: 10.3390/polym13162710.
- Zhou, W. et al., “Chip-based mems platform for thermogravimetric/differential thermal analysis (tg/dta) joint characterization of materials,” Micromachines, 2022, 13 (3): p. 1–11, doi: 10.3390/mi13030445.
- Simonenko, T. L. et al. “Hydrothermal synthesis of a cellular NiO film on carbon paper as a promising way to obtain a hierarchically organized electrode for a flexible supercapacitor,” Materials (Basel)., 2023, 16 (15), doi: 10.3390/ma16155208.
- Ibrahim, M. et al. “Enhanced corrosion protection of epoxy/ZnO-NiO nanocomposite coatings on steel,” Coatings, 2020, 10 (783): p. 1–14, doi:10.3390/coatings10080783.
- Ndukwe, A. I. and Anyakwo, C. N. “Corrosion inhibition model for mild steel in sulphuric acid by crushed leaves of Clerodendrum Splendens (Verbenaceae),” Int. J. Sci. Eng. Appl. Sci., 2017, 3 (3): p. 39–49.
