Have a personal or library account? Click to login
Characterization of nickel (II) oxide nanoparticles synthesized by chemical precipitation technique for corrosion inhibition applications Cover

Characterization of nickel (II) oxide nanoparticles synthesized by chemical precipitation technique for corrosion inhibition applications

Open Access
|Dec 2025

References

  1. Grilli, M. L. “Metal oxides,” Metals, 2020, 10 (6): p. 1–3, doi: 10.3390/met10060820.
  2. Ren, B., Wang, Y. and Ou, J. Z. “Engineering two-dimensional metal oxides via surface functionalization for biological applications,” Mater. Chem. B, 2020, doi: 10.1039/C9TB02423A.
  3. Mohammad, M. K., Syed, F. A. and Abdullah, A. “Metal oxides as photocatalysts,” J. Saudi Chem. Soc., 2015, 19: p. 462–464, doi: 10.1016/j.jscs.2015.04.003.
  4. Gouda, M. and Abd El-Lateef, H.M. “Novel cellulose derivatives containing metal (Cu, Fe, Ni) oxide nanoparticles as eco-friendly corrosion inhibitors for C-steel in acidic chloride solutions,” Molecules, 2021, 26 (22), doi: 10.3390/molecules26227006.
  5. Anjum, M. J. et al. Metal / metal oxide nanoparticles as corrosion inhibitors. Elsevier Inc., 2020, doi: 10.1016/B978-0-12-819359-4.00011-8.
  6. Xavier, J. R. “Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel,” Mater. Sci. Eng. B, 2020, 260: p. 114639, doi: 10.1016/j.mseb.2020.114639.
  7. Iqbal, A. et al. “Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides,” Catalysts, 2021, 11 (7), doi: 10.3390/catal11070806.
  8. Islam, R. et al. “Modulating Mn-doped NiO nanoparticles: structural, optical and electrical property tailoring for enhanced hole transport layers,” Nanoscale Adv., 2024, doi: 10.1039/d4na00708e.
  9. Barzinjy, A. A. et al. “Green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation,” J. Mater. Sci. Mater. Electron., 2020, 31(14): p. 11303–11316, doi: 10.1007/s10854-020-03679-y.
  10. Panigrahi, U.K. “Effect of Mg doping on the improvement of photoluminescence and magnetic properties of NiO nanoparticles,” Nano Express, 2020, 1 (2), doi: 10.1088/2632-959X/aba285.
  11. Deshpande, M.P., et al. “Structural, thermal and optical properties of nickel oxide (NiO) nanoparticles synthesized by chemical precipitation method,” Adv. Mater. Res., 2016, 1141: p. 65–71, doi: 10.4028/www.scientific.net/amr.1141.65.
  12. Hadi, K. and Al-Saadi, T. M. “Investigating the structural and magnetic properties of nickel oxide nanoparticles prepared by precipitation method,” Ibn AL-Haitham J. Pure Appl. Sci., 2022, 35 (4): p. 94–103, doi: 10.30526/35.4.2872.
  13. Nakhaeenejad, S. et al. “Enhancing the efficiency of hole-transport-free perovskite solar cells using nickel oxide nanoparticles as a dopant in graphite-based carbon electrodes’’, J. Phys. Chem. Solids, 2024, 189: p. 111958, doi: 10.1016/j.jpcs.2024.111958.
  14. Zhao, M. et al., “Facile electrolysis-solvothermal synthesis of NiOx/graphene for enhanced ethanol oxidation to acetate,” Dalt. Trans., 2024, 53 (9): p. 4237–4242, doi: 10. 1039/d3dt03963c.
  15. Dojer, B. and Kristl, J. “Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method,” Heliyon, 2017: p. 1–19, doi: 10.1016/j.heliyon.2017.e00273.
  16. Fereshteh, Z. et al. “Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor,” J. Clust. Sci., 2012, 23 (2): p. 577–583, doi: 10.1007/s10876-012-0477-8.
  17. Meher, S.K. Justin, P. and Rao, G. R. “Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide,” ACS Appl. Mater. Interfaces, 2011, 3 (6): p. 2063–2073, doi: 10.1021/am200294k.
  18. Shalichah, C. and Khumaeni, A. “Synthesis of nickel nanoparticles by pulse laser ablation method using Nd:YAG laser,” J. Phys. Conf. Ser., 2018, 1025 (1), doi: 10.1088/1742-6596/1025/1/012002.
  19. Olajire, A.A. and Mohammed, A.A. “Green synthesis of nickel oxide nanoparticles and studies of their photocatalytic activity in degradation of polyethylene films,” Adv. Powder Technol., 2020, 31 (1): p. 211–218, doi: 10.1016/j.apt.2019.10.012.
  20. Srihasam, K. et al. “Phytogenic generation of NiO nanoparticles using stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties,” Biomolecules, 2020, 10 (1), doi: 10.3390/biom10010089.
  21. Rifaya, M.N., Theivasanthi, T. and Alagar, M. “Chemical capping synthesis of nickel oxide nanoparticles and their characterizations studies,” Nanosci. Nanotechnol., 2012, 2(5): p. 134–138, doi: 10.5923/j.nn.20120205.01.
  22. Salavati-niasari, M., Davar, F., and Fereshteh, Z.“Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor,” J. Alloys Compd., 2010, 494: p. 410–414, doi: 10.1016/j.jallcom.2010.01.063.
  23. Danial, A.S. et al. “On the synthesis of nickel oxide nano-particles by sol-gel technique and its electrocatalytic oxidation of glucose,” J. Power Sources, 2018, 293: p. 101–108, doi: 10.1016/j.jpowsour.2015.05.024.
  24. Hada, R. et al. “A novel synthesis process for making nickel oxide nanoparticles,” Int. Res. J. Pure Appl. Chem., 2013, 3(2): p. 111–117.
  25. Nathan, T., Aziz, A., Noor, A. F. and Prabaharan, S. R. S. “Nanostructured NiO for electrochemical capacitors: Synthesis and electrochemical properties,” J. Solid State Electrochem., 2008, 12 (7): p. 1003–1009, doi: 10.1007/s10008-007-0465-3.
  26. Ortega, D. et al. “Phase, size and shape controlled formation of aerosol generated nickel and nickel oxide nanoparticles,” J. Alloys Compd., 2013, 579: p. 495–501, doi: 10.1016/j.jallcom.2013.06.128.
  27. Sheit, H. M. K. et al. “Enhanced anti-corrosion efficiency and antimicrobial properties of green synthesised nickel oxide (NiO) nanoparticles,” Res. Sq., 2023, p. 1–27.
  28. Firisa, S. G., Muleta, G. C., and Yimer, A. A. “Synthesis of nickel oxide nanoparticles and copper-doped nickel oxide nanocomposites using Phytolacca Dodecandra l ’ herit leaf extract and evaluation of its antioxidant and photocatalytic activities,” ACS Omega, 2022, 7: p. 44720–44732, doi: 10.1021/acsomega.2c04042.
  29. Ndukwe, A. I. et al. “Metal corrosion in high temperature conditions: A review,” Zast. Mater., 2025, 65: p. 1–25, doi: 10.62638/ZasMat1203.
  30. Nwigwe, U. S., Umunakwe, R. and Okon, K. “The inhibition of Carica Papaya leaves extract on the corrosion of cold worked and annealed mild steel in HCl and NaOH solutions using a weight loss technique,” Eng. Appl. Sci. Res., 2019, 46 (2): p. 114–119, 2019, doi: 10.14456/easr.2019.14.
  31. Ndukwe, A.I., Ozoh, C. C. and Okon, K. “The inhibition of mild steel corrosion by papaya and neem extracts,” Mater. Prot., 2023, 64 (3): p. 274–282, doi: 10.5937/zasmat2303274N.
  32. Okon, K. et al. “Corrosion inhibition of mild steel and aluminium using extracts of vernonia amygdalina: A review,” Nexus Futur. Mater., 2025, 2 (1): p. 154–166, doi: 10.70128/590516.
  33. Okon, K., Ayogu, I. I., Azeez, T. O., and Akalezi, C. O. “Artificial neural network modelling of corrosion inhibition of mild steel in marine environment using epoxy-nickel oxide nanocomposite coatings,” World J. Mater. Sci. Technol., 2025, 2 (1):p. 9–26, 2025, doi: https://doi.org/10.11648/j.wjmst.20250201.12.
  34. Agu, P. C. et al., “Response evaluation of mild steel corrosion rate in H2SO4 to the synegistic influenceof exposure time and steel weight loss,” J. Innov. Res. Eng. Sci., 2025, 6 (1):p. 634–651, 2025, Online: available: https://journals.unizik.edu.ng/joires/about%0AResponse
  35. Agu, P. C. et al., “Multi-factorial prediction of mild steel exposure time during its corrosion inhibition with Hibiscus Sabdariffa leaf extract in 0.5 M H2SO4,” J. Innov. Res. Eng. Sci., 2025, 6 (1): p. 652–665.
  36. Okon, K. et al. “Recent advances in the use of metal oxides as corrosion inhibitors: a review,” KOM-Corrosion Mater. Prot. J., 2025, 69: p. 14–33, doi: 10.2478/kom-2025-0003.
  37. Okon, K. et al. “Recent progress in the application of nickel (nickel oxide nanoparticles) nanocomposites as corrosion inhibitors,” Port. Electrochim. Acta, 2026, 44 (4): p. 267–287, doi: https://doi.org/10.4152/pea.2026440402.
  38. Okon, K. et al. “ANN Modelling of corrosion inhibition of mild steel in marine environment using epoxy-nickel oxide nanocomposite coatings,” Acad. J. Manuf. Eng., 2025, 23(2): p. 32–42, doi: 10.5281/zenodo.15863489.
  39. Khodair, Z. T., Khadom, A. A., and Jasim, H. A. “Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: preparation, characterization and mathematical views,” J. Mater. Res. Technol., 2018: p. 1–12, doi: 10.1016/j.jmrt.2018.03.003.
  40. Ali, A., Chiang, Y. W., and Santos, R. M. “X-ray diffraction techniques for mineral characterization: a review for engineers of the fundamentals, applications, and research directions,” Minerals, 2022, 12 (2), doi: 10.3390/min12020205.
  41. Fatimah, S., Ragadhita, R., Al Husaeni, D. F., and Nandiyanto, A. B. D. “How to calculate crystallite size from x-ray diffraction (XRD) using Scherrer method,” ASEAN J. Sci. Eng., 2022, 2 (1): p. 65–76, doi: 10.17509/ajse.v2i1.37647.
  42. Dolabella, S., Borzì, A., Dommann, A. and Neels, A. “Lattice strain and defects analysis in nanostructured semi-conductor materials and devices by high-resolution X-ray diffraction: theoretical and practical aspects,” Small Methods, vol. 6, no. 2, 2022, doi: 10.1002/smtd.202100932.
  43. Cameron, F. H. and Raymond, E. S. “Tutorial on powder X-ray diff raction for characterizing nanoscale materials,” ACS Nano, 2019, doi: 10.1021/acsnano.9b05157.
  44. Srivastava, P. C. and Srivastava, N. “Realizing NiO nano-crystals from a simple chemical method,” Bull. Mater. Sci., 2010, 33: p. 653–656, doi: 10.1007/s12034-011-0142-0.
  45. Mohammad, M., Irfan, A. and Mohd, S. “Investigation into the highly efficient Artemisia Absinthium – silver nanoparticles composite as a novel environmentally benign corrosion inhibitor for mild steel in 1M HCl,” J. Adhes. Sci. Technol., 2022: p. 1–26, 2022, doi: 10.1080/01694243.2022.2075523.
  46. Singh, A. et al., “Structurally and morphologically engineered single-pot biogenic synthesis of NiO nanoparticles with enhanced photocatalytic and antimicrobial activities,” J. Clean. Prod., 2022, 343, doi: 10.1016/j.jclepro.2022.131026.
  47. Haq, S. et al., “Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus Sativus (R. sativus) extract,” Mater. Res. Express, 2021, 8(5), doi: 10.1088/2053-1591/abfc7c.
  48. Blanco, I. and Siracusa, V. “The use of thermal techniques in the characterization of bio-sourced polymers,” Materials (Basel)., 2021, 14 (7), doi: 10.3390/ma14071686.
  49. Majder-Łopatka, M. et al., “Thermal analysis of plastics used in the food industry,” Materials (Basel)., 2022, 15 (1), doi: 10.3390/ma15010248.
  50. Asyraf, M. R. M. et al., “Thermal properties of oil palm lignocellulosic fibre reinforced polymer composites: a comprehensive review on thermogravimetry analysis”, 2023, 30(5), Springer Netherlands, doi: 10.1007/s10570-023-05080-4.
  51. Qaiss, K. “Graphene and nanoparticles hybrid nanocompo-sites from preparation to applications”. Composites Science and Technology, 2021, doi: 10.1007/978-981-33-4988-9.
  52. Sai Revanth, J. et al. “TGA and DSC analysis of vinyl ester reinforced by Vetiveria zizanioides, jute and glass fiber,” Mater. Today Proc., 2019, 26: p. 460–465, doi: 10.1016/j.matpr.2019.12.082.
  53. Nurazzi, N. M. et al., “Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: A review on influence of chemical treatments,” Polymers (Basel)., 2021, 13 (16), doi: 10.3390/polym13162710.
  54. Zhou, W. et al., “Chip-based mems platform for thermogravimetric/differential thermal analysis (tg/dta) joint characterization of materials,” Micromachines, 2022, 13 (3): p. 1–11, doi: 10.3390/mi13030445.
  55. Simonenko, T. L. et al. “Hydrothermal synthesis of a cellular NiO film on carbon paper as a promising way to obtain a hierarchically organized electrode for a flexible supercapacitor,” Materials (Basel)., 2023, 16 (15), doi: 10.3390/ma16155208.
  56. Ibrahim, M. et al. “Enhanced corrosion protection of epoxy/ZnO-NiO nanocomposite coatings on steel,” Coatings, 2020, 10 (783): p. 1–14, doi:10.3390/coatings10080783.
  57. Ndukwe, A. I. and Anyakwo, C. N. “Corrosion inhibition model for mild steel in sulphuric acid by crushed leaves of Clerodendrum Splendens (Verbenaceae),” Int. J. Sci. Eng. Appl. Sci., 2017, 3 (3): p. 39–49.
DOI: https://doi.org/10.2478/kom-2025-0005 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 43 - 56
Published on: Dec 8, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Kooffreh Okon, Christogonus Oudney Akalezi, Taofik Oladimeji Azeez, Ikechukwu Ignatius Ayogu, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.