Have a personal or library account? Click to login
Corrosion inhibition alternatives and a novel chromate-like option: Review Cover

Corrosion inhibition alternatives and a novel chromate-like option: Review

Open Access
|Oct 2024

References

  1. Koch, G. “<em>Cost of corrosion, Trends in oil and gas corrosion research and technologies</em><em>”</em>, Elsevier, Amsterdam, USA <bold>2017</bold>, 3–30.
  2. Umoren S, A., Solomon M. M., Saji V, S. Corrosion Inhibitors for Sour Oilfield Environment (H<sub>2</sub>S Corrosion), In <em>Corrosion Inhibitors in the Oil and Gas Industry</em>, Saji, V, S., Umoren, S, A., Eds.; Wiley <bold>2020</bold>, 229–254. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/9783527822140.ch8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/9783527822140.ch8</a>">https://doi.org/10.1002/9783527822140.ch8</ext-link>
  3. Verma, C. et al. “Recent Developments in Sustainable Corrosion Inhibitors: Design, Performance and Industrial Scale Applications. <em>Mater. Adv.</em> <bold>2021</bold>, 2, 3806–3850. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/D0MA00681E" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/D0MA00681E</a>">https://doi.org/10.1039/D0MA00681E</ext-link>.
  4. Thompson N, G., Yunovich M., Dunmire D. cost of corro-sion and corrosion maintenance strategies. <em>Corrosion Reviews</em> <bold>2007</bold>, 25, 247–262. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1515/CORRREV.2007.25.3-4.247" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/CORRREV.2007.25.3-4.247</a>">https://doi.org/10.1515/CORRREV.2007.25.3-4.247</ext-link>
  5. Koch G, H. et al. <em>Corrosion cost and preventive strategies in the United States</em><em>”</em>, Federal Highway Administration, United States <bold>2002.</bold>
  6. Alhaffar, M, T. et al. Isoxazolidine Derivatives as Corrosion Inhibitors for Low Carbon Steel in HCl Solution: Experimental, Theoretical and Effect of KI Studies. <em>RSC Adv.</em> <bold>2018</bold>, 8, 1764–1777. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C7RA11549K" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C7RA11549K</a>">https://doi.org/10.1039/C7RA11549K</ext-link>
  7. Kaczerewska, O. et al. Effectiveness of O – Bridged Cationic Gemini Surfactants as Corrosion Inhibitors for Stainless Steel in 3 M HCl: Experimental and Theoretical Studies. <em>Journal of Molecular Liquids</em> <bold>2018</bold>, 249, 1113–1124. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.molliq.2017.11.142" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.molliq.2017.11.142</a>">https://doi.org/10.1016/j.molliq.2017.11.142</ext-link>
  8. Verma, C. et al. Choline Based Ionic Liquids as Sustainable Corrosion Inhibitors on Mild Steel Surface in Acidic Medium: Gravimetric, Electrochemical, Surface Morphology, DFT and Monte Carlo Simulation Studies. <em>Applied Surface Science</em> <bold>2018a</bold>, 457, 134–149. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apsusc.2018.06.035" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apsusc.2018.06.035</a>">https://doi.org/10.1016/j.apsusc.2018.06.035</ext-link>
  9. Gan, M. Corrosion Control (III): Corrosion Inhibitors. In <em>Corrosion in CO<sub>2</sub> Capture, Transportation, Geological Utilization and Storage</em>; Zhang, L., Ed, Engineering Materials. Springer Nature Singapore: Singapore <bold>2023</bold>, 111–130. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-981-99-2392-2_7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-981-99-2392-2_7</a>">https://doi.org/10.1007/978-981-99-2392-2_7</ext-link>
  10. Montesinos-López, O, A. et al. Multi-Trait, Multi-Environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits. <em>G3 Genes|Genomes|Genetics</em> <bold>2018</bold>, 8, 3829–3840. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1534/g3.118.200728" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1534/g3.118.200728</a>">https://doi.org/10.1534/g3.118.200728</ext-link>
  11. Kolawole, F, O. et al. Mitigation of Corrosion Problems in API 5L Steel Pipeline-A Review. J. Mater. Environ. <bold>2018</bold>, 9
  12. Imai, T. et al. Interaction of Indomethacin with Low Molecular Weight Chitosan, and Improvements of Some Pharmaceutical Properties of Indomethacin by Low Molecular Weight Chitosans. <em>International Journal of Pharmaceutics</em> <bold>1991</bold>, 67, 11–20. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0378-5173(91)90260-U" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0378-5173(91)90260-U</a>">https://doi.org/10.1016/0378-5173(91)90260-U</ext-link>
  13. Singla A, K., Chawla M. Chitosan: Some Pharmaceutical and Biological Aspects – an Update. <em>Journal of Pharmacy and Pharmacology</em> <bold>2010</bold>, 53, 1047–1067. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1211/0022357011776441" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1211/0022357011776441</a>">https://doi.org/10.1211/0022357011776441</ext-link>
  14. Guo, Z. et al. Antifungal Properties of Schiff Bases of Chitosan, N-Substituted Chitosan and Quaternized Chitosan. <em>Carbohydrate Research</em> <bold>2007</bold>, 342, 1329–1332. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.carres.2007.04.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.carres.2007.04.006</a>">https://doi.org/10.1016/j.carres.2007.04.006</ext-link>
  15. Portes, E. et al. Environmentally Friendly Films Based on Chitosan and Tetrahydrocurcuminoid Derivatives Exhibiting Antibacterial and Antioxidative Properties. <em>Carbohydrate Polymers</em> <bold>2009</bold>, 76, 578–584. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.carbpol.2008.11.031" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.carbpol.2008.11.031</a>">https://doi.org/10.1016/j.carbpol.2008.11.031</ext-link>
  16. Goosen M, F. <em>Applications of Chitan and Chitosan</em>. CRC Press, Florida, USA <bold>1996</bold>
  17. Cioc R, C., Ruijter. E., Orru, R, V, A. Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis, <em>Green Chem.</em> <bold>2014</bold>, 16, 2958–2975. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C4GC00013G" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C4GC00013G</a>">https://doi.org/10.1039/C4GC00013G</ext-link>
  18. Lima C, G, S. et al. Heterogenous Green Catalysis: Application of Zeolites on Multicomponent Reactions. <em>Current Opinion in Green and Sustainable Chemistry</em> <bold>2019</bold>, 15, 7–12. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.cogsc.2018.07.006" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cogsc.2018.07.006</a>">https://doi.org/10.1016/j.cogsc.2018.07.006</ext-link>
  19. Gu Y. Multicomponent Reactions in Unconventional Solvents: State of the Art. <em>Green Chem.</em> <bold>2012</bold>, 14, 2091. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/c2gc35635j" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/c2gc35635j</a>">https://doi.org/10.1039/c2gc35635j</ext-link>
  20. Bariwal J, B., Trivedi J, C., Van Der Eycken E, V. Microwave Irradiation and Multicomponent Reactions, In <em>Synthesis of Heterocycles via Multicomponent Reactions II</em>, Orru, R. V. A., Ruijter, E., Eds.; Topics in Heterocyclic Chemistry; Springer Berlin Heidelberg: Berlin, Heidelberg <bold>2010</bold>, 25, 169–230. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/7081_2010_45" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/7081_2010_45</a>">https://doi.org/10.1007/7081_2010_45</ext-link>
  21. Verma R, S. “Greener” Chemical Syntheses Using Mechanochemical Mixing or Microwave and Ultrasound Irradiation. <em>Green Chemistry Letters and Reviews</em> <bold>2007</bold>, 1, 37–45. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17518250701756991" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17518250701756991</a>">https://doi.org/10.1080/17518250701756991</ext-link>
  22. Liu Y. β-Cyclodextrin Modified Natural Chitosan as a Green Inhibitor for Carbon Steel in Acid Solutions. <em>Industrial &amp; Engineering Chemistry Research</em> <bold>2015</bold> <em>54</em> (21), 5664-5672 DOI: <a href="https://doi.org/10.1021/acs.iecr.5b00930" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1021/acs.iecr.5b00930</a>
  23. Chen, J. et al. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. <em>Green Chemistry</em> <bold>2005</bold>, <em>7</em>, 64-82
  24. Candy D., Macrogol B, J. (Polyethylene Glycol) Laxatives in Children with Functional Constipation and Faecal Impaction: A Systematic Review. <em>Archives of Disease in Childhood</em> <bold>2008</bold>, 94, 156–160. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1136/adc.2007.128769" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1136/adc.2007.128769</a>">https://doi.org/10.1136/adc.2007.128769</ext-link>
  25. D’souza, A, A., Shegokar, R. Polyethylene Glycol (PEG): A Versatile Polymer for Pharmaceutical Applications. <em>Expert Opinion on Drug Delivery</em> <bold>2016</bold>, 13, 1257–1275. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/17425247.2016.1182485" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/17425247.2016.1182485</a>">https://doi.org/10.1080/17425247.2016.1182485</ext-link>
  26. Roberts M, J., Bentley M, D., Harris J, M. Chemistry for Peptide and Protein PEGylation. <em>Advanced Drug Delivery Reviews</em> <bold>2012</bold>, 64, 116–127. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.addr.2012.09.025" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.addr.2012.09.025</a>">https://doi.org/10.1016/j.addr.2012.09.025</ext-link>
  27. Kocheva, K. et al. Parameters of cell membrane stability and levels of oxidative stress in leaves of wheat seedlings treated with PEG 6000. <em>Gen. Appl. Plant Physiol.</em> <bold>2009</bold>, 35, 127–133.
  28. Li, Y. et al. Promoted Off-on Recognition of H<sub>2</sub>O<sub>2</sub> Based on the Fluorescence of Silicon Quantum Dots Assembled Two-Dimensional PEG-MnO2 Nanosheets Hybrid Nanoprobe. <em>Microchim Acta</em> <bold>2020</bold>, 187, 347. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00604-020-04276-w" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00604-020-04276-w</a>">https://doi.org/10.1007/s00604-020-04276-w</ext-link>
  29. Kiasat, A, R. et al. <em>Simple Practical and Eco-friendly Reduction of Nitroarenes with Zinc in the Presence of Polyethylene Glycol Immobilized on Silica Gel as a New Solid – liquid Phase Transfer Catalyst in Water</em> <em>2011</em>
  30. Rytting, E. et al. A Quantitative Structure-Property Relationship for Predicting Drug Solubility in PEG 400/Water Cosolvent Systems. <em>Pharm Res</em>. <bold>2004</bold>, 21, 237–244. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1023/B:PHAM.0000016237.06815.7a" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1023/B:PHAM.0000016237.06815.7a</a>">https://doi.org/10.1023/B:PHAM.0000016237.06815.7a</ext-link>
  31. Yang H., Morris J. J., Lopina S. T. Polyethylene Glycol – Polyamidoamine Dendritic Micelle as Solubility Enhancer and the Effect of the Length of Polyethylene Glycol Arms on the Solubility of Pyrene in Water. <em>Journal of Colloid and Interface Science</em> <bold>2004</bold>, 273, 148–154. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jcis.2003.12.023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jcis.2003.12.023</a>">https://doi.org/10.1016/j.jcis.2003.12.023</ext-link>
  32. Deyab M, A. Understanding the Anti-Corrosion Mechanism and Performance of Ionic Liquids in Desalination, Petroleum, Pickling, de-Scaling, and Acid Cleaning Applications. <em>Journal of Molecular Liquids</em> <bold>2020,</bold> 309, 113107. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.molliq.2020.113107" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.molliq.2020.113107</a>">https://doi.org/10.1016/j.molliq.2020.113107</ext-link>
  33. Ardakani E. K., Kowsari E., Ehsani, A. Imidazolium-Derived Polymeric Ionic Liquid as a Green Inhibitor for Corrosion Inhibition of Mild Steel in 1.0 M HCl: Experimental and Computational Study. <em>Colloids and Surfaces A: Physico-chemical and Engineering Aspects</em> <bold>2020</bold>, 586, 124195. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.colsurfa.2019.124195" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.colsurfa.2019.124195</a>">https://doi.org/10.1016/j.colsurfa.2019.124195</ext-link>
  34. Masri N. A., Mutalib M. A., Leveque J. M. A Review on Dicationic Ionic Liquids: Classification and Application. <em>Ind Eng Manage</em> <bold>2016</bold>, 5. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.4172/2169-0316.1000197" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4172/2169-0316.1000197</a>">https://doi.org/10.4172/2169-0316.1000197</ext-link>
  35. Angell C. A. Ionic Liquids, Superionic Glasses, Quasi-Ionic Liquids, Quasi-Liquid Ionics, All with High Conductivities but Some with Little Fluidity. Where Does the Paradigm End? <em>Meet. Abstr.</em> <bold>2014</bold>, 2 1416–1416. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1149/MA2014-02/25/1416" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1149/MA2014-02/25/1416</a>">https://doi.org/10.1149/MA2014-02/25/1416</ext-link>
  36. Banger, A. et al. Application of Green Solvent in Green Chemistry: An Overview. <em>gctl</em> <bold>2023</bold>, 9, 01–14. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.18510/gctl.2023.911" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.18510/gctl.2023.911</a>">https://doi.org/10.18510/gctl.2023.911</ext-link>
  37. DeSimone, J. M. Practical Approaches to Green Solvents. <em>Science</em> <bold>2002</bold>, 297, 799–803. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1126/science.1069622" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1126/science.1069622</a>">https://doi.org/10.1126/science.1069622</ext-link>
  38. Reslow M., Adlercreutz P., Mattiasson B. On the Importance of the Support Material for Bioorganic Synthesis. Influence of Water Partition between Solvent, Enzyme and Solid Support in Water-Poor Reaction Media”, <em>Eur J Biochem</em> <bold>1988</bold>, 172, 573–578. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1111/j.1432-1033.1988.tb13927.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1432-1033.1988.tb13927.x</a>">https://doi.org/10.1111/j.1432-1033.1988.tb13927.x</ext-link>
  39. De Damborenea J., Conde A., Arenas M. A. Corrosion Inhibition with Rare Earth Metal Compounds in Aqueous Solutions. In <em>Rare Earth-Based Corrosion Inhibitors</em>. Elsevier <bold>2014</bold>, 84–116. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1533/9780857093585.84" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1533/9780857093585.84</a>">https://doi.org/10.1533/9780857093585.84</ext-link>
  40. Khramov A. N. et al. Hybrid Organo-Ceramic Corrosion Protection Coatings with Encapsulated Organic Corrosion Inhibitors. <em>Thin Solid Films</em> <bold>2004</bold>, <em>447</em><em>–</em><em>448</em>, 549–557. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.tsf.2003.07.016" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tsf.2003.07.016</a>">https://doi.org/10.1016/j.tsf.2003.07.016</ext-link>
  41. Omidvar M. et al. Development of Highly Efficient Dual-Purpose Gas Hydrate and Corrosion Inhibitors for Flow Assurance Application: An Experimental and Computational Study. <em>Energy Fuels</em> <bold>2023</bold>, 37, 1006–1021. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1021/acs.energyfuels.2c03454" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/acs.energyfuels.2c03454</a>">https://doi.org/10.1021/acs.energyfuels.2c03454</ext-link>
  42. Shah B A. Arsenic Contamination in Groundwater in the Middle Gangetic Plain, India: Its Relations to Fluvial Geomorphology and Quaternary Stratigraphy, In <em>Safe and Sustainable Use of Arsenic-Contaminated Aquifers in the Gangetic Plain</em>; Ramanathan, A., Johnston, S., Mukherjee, A., Nath, B., Eds, Springer International Publishing: Cham <bold>2015</bold>, 33–53. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/978-3-319-16124-2_3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-3-319-16124-2_3</a>">https://doi.org/10.1007/978-3-319-16124-2_3</ext-link>
  43. Leopold I. H. Pharmacology and toxicology: Review of the Literature. <em>Arch Ophthalmol</em> <bold>1950</bold>, 44, 300. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1001/archopht.1950.00910020307011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1001/archopht.1950.00910020307011</a>">https://doi.org/10.1001/archopht.1950.00910020307011</ext-link>
  44. Bidstrup P. L., Case R. A. M. Carcinoma of the Lung in Workmen in the Chromates-Producing Industry in Great Britain, <em>Occupational and Environmental Medicine</em> <bold>1956</bold>, 13, 260–264. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1136/oem.13.4.260" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1136/oem.13.4.260</a>">https://doi.org/10.1136/oem.13.4.260</ext-link>
  45. Kendig M. W., Buchheit R. G. Corrosion Inhibition of Aluminum and Aluminum Alloys by Soluble Chromates, Chromate Coatings, and Chromate-Free Coatings. <em>CORROSION</em> <bold>2003</bold>, 59, 379–400. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5006/1.3277570" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5006/1.3277570</a>">https://doi.org/10.5006/1.3277570</ext-link>
  46. Zhao, J. et al. Effects of Chromate and Chromate Conversion Coatings on Corrosion of Aluminum Alloy 2024-T3. <em>Surface and Coatings Technology</em> <bold>2001</bold>, 140, 51–57. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0257-8972(01)01003-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0257-8972(01)01003-9</a>">https://doi.org/10.1016/S0257-8972(01)01003-9</ext-link>
  47. Zehra S., Mobin M., Aslam J. Chromates as Corrosion Inhibitors, In <em>Inorganic Anticorrosive Materials.</em> Elsevier <bold>2022</bold>, 251–268. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/B978-0-323-90410-0.00014-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-323-90410-0.00014-3</a>">https://doi.org/10.1016/B978-0-323-90410-0.00014-3</ext-link>
  48. Forsyth, M. et al. Effectiveness of Rare-Earth Metal Compounds as Corrosion Inhibitors for Steel. <em>CORROSION</em> <bold>2002</bold>, 58, 953–960. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5006/1.3280785" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5006/1.3280785</a>">https://doi.org/10.5006/1.3280785</ext-link>
  49. Li L., Gao J., Wang Y. Evaluation of Cyto-Toxicity and Corrosion Behavior of Alkali-Heat-Treated Magnesium in Simulated Body Fluid. <em>Surface and Coatings Technology</em> <bold>2004</bold>, 185, 92–98. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.surfcoat.2004.01.004" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.surfcoat.2004.01.004</a>">https://doi.org/10.1016/j.surfcoat.2004.01.004</ext-link>
  50. Birbilis N., Buchheit R. G. Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys. <em>J. Electrochem. Soc.</em> <bold>2005</bold>, 152, 140. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1149/1.1869984" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1149/1.1869984</a>">https://doi.org/10.1149/1.1869984</ext-link>
  51. Campestrini P., Terryn H., Hovestad A., De Wit J. H. W. Formation of a Cerium-Based Conversion Coating on AA2024: Relationship with the Microstructure. <em>Surface and Coatings Technology</em> <bold>2004</bold>, 176, 365–381. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0257-8972(03)00743-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0257-8972(03)00743-6</a>">https://doi.org/10.1016/S0257-8972(03)00743-6</ext-link>
  52. Wu L, K., Zhang X. F., Hu J. M. Corrosion Protection of Mild Steel by One-Step Electrodeposition of Superhydrophobic Silica Film. <em>Corrosion Science</em> <bold>2014</bold>, 85, 482–487. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.corsci.2014.04.026" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.corsci.2014.04.026</a>">https://doi.org/10.1016/j.corsci.2014.04.026</ext-link>
  53. Zheludkevich M, L. et al. Nanostructured Sol–Gel Coatings Doped with Cerium Nitrate as Pre-Treatments for AA2024-T3. <em>Electrochimica Acta</em> <bold>2005</bold>, 51, 208–217. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.electacta.2005.04.021" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.electacta.2005.04.021</a>">https://doi.org/10.1016/j.electacta.2005.04.021</ext-link>
  54. Montemor M. F. et al. Evaluation of Self-Healing Ability in Protective Coatings Modified with Combinations of Layered Double Hydroxides and Cerium Molibdate Nanocontainers Filled with Corrosion Inhibitors. <em>Electrochimica Acta</em> <bold>2012</bold>, 60, 31–40. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.electacta.2011.10.078" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.electacta.2011.10.078</a>">https://doi.org/10.1016/j.electacta.2011.10.078</ext-link>
  55. Pebere N., Lebon E. Local Electrochemical Impedance Spectroscopy: A Powerful Tool for Studying Corrosion Inhibition Mechanisms on 2024 Aluminum Alloy. <em>Meet. Abstr</em>. <bold>2016,</bold> 2, 1701–1701. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1149/MA2016-02/23/1701" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1149/MA2016-02/23/1701</a>">https://doi.org/10.1149/MA2016-02/23/1701</ext-link>
  56. Behrsing T., Deacon G. B., Junk P. C. The Chemistry of Rare Earth Metals, Compounds, and Corrosion Inhibitors. In <em>Rare Earth-Based Corrosion Inhibitors.</em> Elsevier <bold>2014</bold>, 1–37. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1533/9780857093585.1" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1533/9780857093585.1</a>">https://doi.org/10.1533/9780857093585.1</ext-link>
  57. Kolics A. et al. Cerium Deposition on Aluminum Alloy 2024-T3 in Acidic NaCl Solutions. <em>J. Electrochem. Soc.</em> <bold>2003</bold>, 150, 512. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1149/1.1615995" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1149/1.1615995</a>">https://doi.org/10.1149/1.1615995</ext-link>
  58. Irving E., Stoker A. W. Vanadium Compounds as PTP Inhibitor. <em>Molecules</em> <bold>2017</bold>, 22, 2269. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/molecules22122269" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/molecules22122269</a>">https://doi.org/10.3390/molecules22122269</ext-link>
  59. Kwolek P., Kościelniak B., Wytrwal-Sarna M. Pentava-lent Vanadium Species as Potential Corrosion Inhibitors of Al<sub>2</sub>Cu Intermetallic Phase in the Sulfuric (VI) Acid Solutions. <em>Materials</em> <bold>2020</bold>, 13, 1946. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ma13081946" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ma13081946</a>">https://doi.org/10.3390/ma13081946</ext-link>
  60. Ralston K. D. et al. Corrosion Inhibition of Aluminum Alloy 2024-T3 by Aqueous Vanadium Species. <em>J. Electrochem. Soc.</em> <bold>2008</bold>, 155, 350. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1149/1.2907772" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1149/1.2907772</a>">https://doi.org/10.1149/1.2907772</ext-link>
  61. McLauchlan C. C. et al. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes. <em>Journal of Inorganic Biochemistry</em> <bold>2010</bold>, 104, 274-281 <a href="https://doi.org/10.1016/j.jinorgbio.2009.12.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jinorgbio.2009.12.001</a>
  62. Iannuzzi M., Frankel G. S. Mechanisms of Corrosion Inhibition of AA2024-T3 by Vanadates. <em>Corrosion Science</em> <bold>2007</bold>, 49, 2371–2391. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.corsci.2006.10.027" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.corsci.2006.10.027</a>">https://doi.org/10.1016/j.corsci.2006.10.027</ext-link>
  63. Li X. et al. Materials science: Share corrosion data. Nature <bold>2015</bold>, 527, 441-442
  64. Guan H., Buchheit R. G. Corrosion Protection of Aluminum Alloy 2024-T3 by Vanadate Conversion Coatings. <em>Corrosion</em> <bold>2004</bold>, 60, 284–296. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5006/1.3287733" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5006/1.3287733</a>">https://doi.org/10.5006/1.3287733</ext-link>
  65. Qu M. et al. Dynamically Monitoring Cellular <em>γ</em>-H<sub>2</sub>AX Reveals the Potential of Carcinogenicity Evaluation for Genotoxic Compounds. <em>Arch Toxicol</em> <bold>2021</bold>, 95, 3559–3573. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s00204-021-03156-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00204-021-03156-3</a>">https://doi.org/10.1007/s00204-021-03156-3</ext-link>
  66. Rangel C., Travassos M. A. The Passivation of Aluminium in Lithium Carbonate/Bicarbonate Solutions. <em>Corrosion Science</em> <bold>1992</bold>, 33, 327–343. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/0010-938X(92)90064-A" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/0010-938X(92)90064-A</a>">https://doi.org/10.1016/0010-938X(92)90064-A</ext-link>
  67. Yan J., Yu J., Ding B. Mixed Ionic and Electronic Conductor for Li-Metal Anode Protection. <em>Adv. Mater.</em> <bold>2018</bold>, 30, 1705105. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1002/adma.201705105" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/adma.201705105</a>">https://doi.org/10.1002/adma.201705105</ext-link>
  68. Lee Y., Cha J. A., Jung D. Y. Lithium Separation by Growth of Lithium Aluminum Layered Double Hydroxides on Aluminum Metal Substrates. <em>Solid State Sciences</em> <bold>2020</bold>, 110, 106488. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.solidstatesciences.2020.106488" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.solidstatesciences.2020.106488</a>">https://doi.org/10.1016/j.solidstatesciences.2020.106488</ext-link>
  69. Kosari A. et al. Cross-sectional characterization of the conversion layer formed on AA2024-T3 by a lithium-leaching coating. Applied Surface Science <bold>2020</bold>, 512, [145665]. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.apsusc.2020.145665" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.apsusc.2020.145665</a>">https://doi.org/10.1016/j.apsusc.2020.145665</ext-link>
  70. Sun, Y. et al. Highly Efficient Lithium Recovery from Pre-Synthesized Chlorine-Ion-Intercalated LiAl-Layered Double Hydroxides via a Mild Solution Chemistry Process. <em>Materials</em> <bold>2019</bold>, 12, 1968. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ma12121968" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ma12121968</a>">https://doi.org/10.3390/ma12121968</ext-link>
  71. Rangel C. M., Travassos M. A. Li-Based Conversion Coatings on Aluminium: An Electrochemical Study of Coating Formation and Growth. <em>Surface and Coatings Technology</em> <bold>2006</bold>, 200, 5823–5828. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.surfcoat.2005.08.145" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.surfcoat.2005.08.145</a>">https://doi.org/10.1016/j.surfcoat.2005.08.145</ext-link>
  72. Visser P. et al. Lithium Salts as Leachable Corrosion Inhibitors and Potential Replacement for Hexavalent Chromium in Organic Coatings for the Protection of Aluminum Alloys. <em>J Coat Technol Res</em> <bold>2016</bold>, 13, 557–566. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11998-016-9784-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11998-016-9784-6</a>">https://doi.org/10.1007/s11998-016-9784-6</ext-link>
  73. Visser P. et al. The Corrosion Protection of AA2024-T3 Aluminium Alloy by Leaching of Lithium – Containing Salts from Organic Coatings. <em>Faraday Discuss</em> <bold>2015</bold>, 180, 511–526. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1039/C4FD00237G" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1039/C4FD00237G</a>">https://doi.org/10.1039/C4FD00237G</ext-link>
  74. Parvizi R. et al. Probing Localised Corrosion Inhibition of AA2024-T3 by Integrating Electrode Array, SVET, SECM, and SEM-EDS Techniques. <em>Metals</em> <bold>2023</bold>, 13, 1703
  75. Kartsonakis I. A. et al. Multifunctional Epoxy Coatings Combining a Mixture of Traps and Inhibitor Loaded Nano-containers for Corrosion Protection of AA2024-T3. <em>Corrosion Science</em> <bold>2014</bold>, 85, 147–159. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.corsci.2014.04.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.corsci.2014.04.009</a>">https://doi.org/10.1016/j.corsci.2014.04.009</ext-link>
  76. Mohamed N, S. et al. Development of Smart Self-Healing Coating for the Corrosion Protection of Magnesium Alloys: A Brief Review. <em>Journal of Adhesion Science and Technology</em> <bold>2022</bold>, 1–19. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/01694243.2022.2158774" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/01694243.2022.2158774</a>">https://doi.org/10.1080/01694243.2022.2158774</ext-link>
  77. Bierwagen G. P., Tallman D. E. Choice and Measurement of Crucial Aircraft Coatings System Properties. <em>Progress in Organic Coatings</em> <bold>2001</bold>, 41, 201–216. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0300-9440(01)00131-X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0300-9440(01)00131-X</a>">https://doi.org/10.1016/S0300-9440(01)00131-X</ext-link>
  78. Glover C. F. et al. In-Coating Graphene Nano-Platelets for Environmentally-Friendly Corrosion Protection of Iron. <em>Corrosion Science</em> <bold>2017</bold>, 114, 169–172. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.corsci.2016.11.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.corsci.2016.11.009</a>">https://doi.org/10.1016/j.corsci.2016.11.009</ext-link>
  79. Pourhashem S. et al. Exploring Corrosion Protection Properties of Solvent Based Epoxy-Graphene Oxide Nanocomposite Coatings on Mild Steel. <em>Corrosion Science</em> <bold>2017</bold>, 115, 78–92. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.corsci.2016.11.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.corsci.2016.11.008</a>">https://doi.org/10.1016/j.corsci.2016.11.008</ext-link>
  80. Ogle k. et al. The Alkaline Stability of Phosphate Coatings I: ICP Atomic Emission Spectroelectrochemistry. <em>Corrosion Science</em> <bold>2004</bold>, 46, 979–995. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/S0010-938X(03)00182-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0010-938X(03)00182-3</a>">https://doi.org/10.1016/S0010-938X(03)00182-3</ext-link>
  81. Yang Y. et al. Effect of a Brief Post-Weld Heat Treatment on the Microstructure Evolution and Pitting Corrosion of Laser Beam Welded UNS S31803 Duplex Stainless Steel. <em>Corrosion Science</em> <bold>2012</bold>, 65, 472–480. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.corsci.2012.08.054" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.corsci.2012.08.054</a>">https://doi.org/10.1016/j.corsci.2012.08.054</ext-link>
  82. Thomas, S. et al. Self-Repairing Oxides to Protect Zinc: Review, Discussion and Prospects. <em>Corrosion Science</em> <bold>2013</bold>, 69,11-22.<a href="https://doi.org/10.1016/j.corsci.2013.01.011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.corsci.2013.01.011</a>
  83. Nanna M. E., Bierwagen G. P. Mg-Rich Coatings: A New Paradigm for Cr-Free Corrosion Protection of Al Aerospace Alloys. <em>J Coat. Technol. Res.</em> <bold>2004</bold>, 1, 69–80. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1007/s11998-004-0001-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11998-004-0001-7</a>">https://doi.org/10.1007/s11998-004-0001-7</ext-link>
  84. Maier B., Frankel G. S. Behavior of Magnesium-Rich Primers on AA2024-T3”, <em>CORROSION</em> <bold>2011</bold>, 67, 055001-1-055001–055015. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.5006/1.3586018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.5006/1.3586018</a>">https://doi.org/10.5006/1.3586018</ext-link>
  85. Akpanyung K. V., Loto R. T. Pitting Corrosion Evaluation: A Review. <em>J. Phys.: Conf. Ser.</em> <bold>2019</bold>, 1378, 022088. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1088/1742-6596/1378/2/022088" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1088/1742-6596/1378/2/022088</a>">https://doi.org/10.1088/1742-6596/1378/2/022088</ext-link>
  86. Bierwagen G. et. Active Metal-Based Corrosion Protective Coating Systems for Aircraft Requiring No-Chromate Pre-treatment. <em>Progress in Organic Coatings</em> <bold>2010</bold>, 67, 195–208. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.porgcoat.2009.10.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.porgcoat.2009.10.009</a>">https://doi.org/10.1016/j.porgcoat.2009.10.009</ext-link>
  87. Gharbi O. et al. Chromate Replacement: What Does the Future Hold”? <em>npj Materials Degradation</em> <bold>2018</bold>, 2, 12. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1038/s41529-018-0034-5" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/s41529-018-0034-5</a>">https://doi.org/10.1038/s41529-018-0034-5</ext-link>
  88. Wan H. et al. Effect of Zinc Phosphate on the Corrosion Behavior of Waterborne Acrylic Coating/Metal Interface. <em>Materials</em> <bold>2017</bold>, 10, 654. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/ma10060654" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/ma10060654</a>">https://doi.org/10.3390/ma10060654</ext-link>
  89. United Nations Environment Program <bold>2021</bold>, <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.unep.org/news-and-stories/story/meeting-global-phosphorus-challenge-will-deliver-food-security-and-reduce">https://www.unep.org/news-and-stories/story/meeting-global-phosphorus-challenge-will-deliver-food-security-and-reduce</ext-link>
  90. Sharfalddin A. A. et al. Therapeutic Properties of Vanadium Complexes. <em>Inorganics</em> <bold>2022,</bold> 10, 244. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.3390/inorganics10120244" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/inorganics10120244</a>">https://doi.org/10.3390/inorganics10120244</ext-link>
  91. Sheikholeslami S. et al. Cut-edge corrosion behavior assessment of newly developed environmental-friendly coating systems using the Scanning Vibrating Electrode Technique (SVET). Corrosion Science <bold>2021</bold>, 192, 813. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://doi.org/https://doi.org/10.1016/j.corsci.2021.109813">https://doi.org/https://doi.org/10.1016/j.corsci.2021.109813</ext-link>
  92. Sheikholeslami S. Evaluation of cut-edge corrosion in environmentally friendly waterborne coil-coatings using the Scanning Vibrating Electrode Technique (SVET). Surface Coatings International <bold>2020</bold>, 5
  93. Cacace. G; Dodds. P. <em>Innovation in Intelligent, Highly Effective Corrosion Inhibitors. PCI Magazine</em> <em>2018</em>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.pcimag.com/articles/105381-innovation-in-intelligent-highly-effective-corrosion-inhibitors">https://www.pcimag.com/articles/105381-innovation-in-intelligent-highly-effective-corrosion-inhibitors</ext-link> (accessed 2023-11-21)
  94. Bastos A. C. et al. Review – On the Application of the Scanning Vibrating Electrode Technique (SVET) to Corrosion Research. <em>Journal of Electrochemical Society</em> <bold>2017</bold>, 164, 973. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1149/2.0431714jes" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1149/2.0431714jes</a>">https://doi.org/10.1149/2.0431714jes</ext-link>
  95. Saeedikhani M. et al. Electrochemical Modeling of Scanning Vibrating Electrode Technique on Scratched and Inclined Surfaces. <em>Journal of Electrochemical Society</em> <bold>2021</bold>, 168, 081505. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1149/1945-7111/ac1b50" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1149/1945-7111/ac1b50</a>">https://doi.org/10.1149/1945-7111/ac1b50</ext-link>
  96. Hussain A. Corrosion Studies Using the Scanning Vibrating Electrode Technique (SVET) – A Brief Review. <em>Current Smart Materials</em> <bold>2021</bold>, 14, 125–130. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.2174/2666145414666210203114259" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/2666145414666210203114259</a>">https://doi.org/10.2174/2666145414666210203114259</ext-link>
  97. Charles-Granville R. S. et al. Application of Finite Element Modeling to Macro-Galvanic Coupling of AA7050 and SS316: Validation Using the Scanning Vibrating Electrode Technique. <em>Journal of Electrochemical Society</em> <bold>2022</bold>, 169, 031502. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1149/1945-7111/ac55ce" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1149/1945-7111/ac55ce</a>">https://doi.org/10.1149/1945-7111/ac55ce</ext-link>
  98. De Viveiros B. V. G. et al. Comparing the Corrosion Behaviour of AA2050 and AA7050 Aluminum Alloys by Scanning Vibrating Electrode and Scanning Ion-Selective Electrode Techniques. <em>Corrosion Engineering, Science and Technology</em> <bold>2022</bold>, 57, 85–96. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1080/1478422X.2021.1992132" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/1478422X.2021.1992132</a>">https://doi.org/10.1080/1478422X.2021.1992132</ext-link>
  99. De Oliveira M. C. L. et al. Investigating Local Corrosion Processes of Magnesium Alloys with Scanning Probe Electrochemical Techniques: A Review. <em>Journal of Magnesium and Alloys</em> <bold>2022,</bold> 10, 2997–3030. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="<a href="https://doi.org/10.1016/j.jma.2022.09.024" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jma.2022.09.024</a>">https://doi.org/10.1016/j.jma.2022.09.024</ext-link>
  100. Newington E. <em>A ’</em><em>New Breed of Corrosion Inhibitor for Steel</em>. Hexigone <bold>2021</bold>. <ext-link ext-link-type="uri" xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="https://www.hexigone.com/whatsnew/a-new-breed-of-corrosion-inhibitor">https://www.hexigone.com/whatsnew/a-new-breed-of-corrosion-inhibitor</ext-link> (accessed 2024-06-13)
DOI: https://doi.org/10.2478/kom-2024-0006 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 51 - 62
Published on: Oct 12, 2024
Published by: Association of Czech and Slovak Corrosion Engineers
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 O. F. Idema, M. Abdulwahab, I. O. Arukalam, C. N. Njoku, E. E. Oguzie, C. N. Anyiam, I. C. Ekeke, B. I. Onyeachu, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.