References
- Musil D., Chrdle A., Gallo J., Infekce v ortopedii. Maxdorf Jessenius: Prague, 2022, ISBN 978-80-7345-703-7.
- Margraf, A., et al., Systemic Inflammatory Response Syndrome After Surgery: Mechanisms and Protection. Anesth Analg 2020, 131 (6), 1693-1707.
- Trampuz, A.; Zimmerli, W., Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 2006, 37 Suppl 2, S59-66.
- Trampuz, A.; Widmer, A. F., Infections associated with orthopedic implants. Curr Opin Infect Dis 2006, 19 (4), 349-56.
- Monteiro, G. Z., et al. In Study of pH sensors based on TiO2 nanotubes, 2014 29th Symposium on Microelectronics Technology and Devices (SBMicro), 1-5 Sept. 2014; 2014; pp 1-4.
- Niederman, R., et al., Short-chain carboxylic-acid-stimulated, PMN-mediated gingival inflammation. Crit Rev Oral Biol Med 1997, 8 (3), 269-90.
- Baliga, S., et al., Salivary pH: A diagnostic biomarker. Journal of Indian Society of Periodontology 2013, 17 (4), 461-5.
- Council Directive 93/42/EEC of 14 June 1993 concerning medical devices. Official Journal L169.
- Uzair, U., Benza, B., Behrend, C. J., Anker, J. N. Noninvasively imaging pH at the surface of implanted orthopedic devices with X-ray excited luminescence chemical imaging (XELCI). ACS Sens 2019, 4 (9), 2367-2373.
- Ghoneim, M. T., et al., Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications. Chem Rev 2019, 119 (8), 5248-5297.
- Widmer, A. F., New Developments in Diagnosis and Treatment of Infection in Orthopedic Implants. Clinical Infectious Diseases 2001, 33 (Supplement_2), S94-S106.
- Deusenbery, C., et al., Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021, 7 (4), 695-720.
- McLister, A., et al., New Developments in Smart Bandage Technologies for Wound Diagnostics. Adv Mater 2016, 28 (27), 5732-7.
- Uzair, U., et al., Noninvasively Imaging pH at the Surface of Implanted Orthopedic Devices with X-ray Excited Luminescence Chemical Imaging. ACS Sensors 2019, 4 (9), 2367-2374.
- Dargaville, T. R., et al., Sensors and imaging for wound healing: a review. Biosens Bioelectron 2013, 41, 30-42.
- Shahrestani, S., et al., Iridium Oxide pH Sensor Based on Stainless Steel Wire for pH Mapping on Metal Surface. IOP Conference Series: Materials Science and Engineering 2018, 328 (1), 012014.
- Manjakkal, L., et al., Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Progress in Materials Science 2020, 109.
- Jírů, J., et al., Preparation of pH-sensitive surface based on mixed oxides of titanium and iridium for early detection of inflammation around the implant. Materials Chemistry and Physics 2023, 305, 128026.
- Chen, M., et al., Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment. Sensors and Actuators B: Chemical 2014, 192, 399-405.
- Fog, A.; Buck, R. P., Electronic semiconducting oxides as pH sensors. Sensors and Actuators 1984, 5 (2), 137-146.
- Zhao, R., et al., A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochimica Acta 2010, 55 (20), 5647-5651.
- Sharma, N., et al., Tantalum oxide thin films for electrochemical pH sensor. Materials Research Express 2020, 7 (3), 036405.
- Namur, R. S., et al., Growth and Electrochemical Stability of Compact Tantalum Oxides Obtained in Different Electrolytes for Biomedical Applications. Materials Research 2015, 18.
- Manjakkal, L., et al., Microstructural, Impedance Spectroscopic and Potentiometric Analysis of Ta2O5 Electrochemical Thick Film pH Sensors. Electroanalysis 2015, 27 (3), 770-781.
