Have a personal or library account? Click to login
Synergistic effect of acetic acid and NOX for objects made of lead and its alloys; indoor corrosive environments in museums and depositories Cover

Synergistic effect of acetic acid and NOX for objects made of lead and its alloys; indoor corrosive environments in museums and depositories

Open Access
|Feb 2023

References

  1. 1. Kreislová K. et al. Corrosion maps of Czech Republic, electronic database http://www.korozni-mapy.cz.
  2. 2. Knotková D., Kreislová K., Dean S.W. Jr. (Eds) Isocorrag International Atmospheric Exposure Program: Summary Of Results, ASTM Data Series 71, Stock No.: DS71, ISBN: 978-0-8031-7011-7.
  3. 3. Kreislova K. et al. Indoor Corrosivity in Klementinum Baroque Library Hall, Prague, WIT Transactions on The Built Environment, 2021, 203, PI-123–PI-131.
  4. 4. Fuente D. et al. The effects of organic pollutants on metals in museums: corrosion products, synergistic effects and the influence of climatic parameter, In: METAL 2013, 16-20 September 2013, Edinburgh, Scotland. Interim Meeting of the ICOM-CC Metal Working Group, 2013, 229–233.
  5. 5. Kreislova K. et al. Indoor corrosivity classification based on lead coupons, KOM – Corrosion and Material Protection Journal, 65 (4), 2021, 7–12.
  6. 6. Saheb M., Dubus M. Indoor corrosivity in museums and archives assessment: standards and recommendations, In: Proceedings of 7th Indoor Air Quality meeting, 15-17 November 2006, Braunschweig, Germany, 2006.
  7. 7. Valach J. et al. Public perception and optical characterization of degraded historic stone and mortar surfaces. In: Proceedings of the International Conference on Heritage, Weathering and Conservation, HWC-2006, 21-24 June 2006, Madrid, Spain. Case studies. London: Taylor&Francis Group, 2006, 827–832.
  8. 8. Sarici D. E. Thermal deterioration of marbles: Gloss, color changes, Construction and Building Materials, 2015, 102, 416–421.
  9. 9. ISO 11844:2020 Corrosion of metals and alloys – Classification of low corrosivity of indoor atmospheres, 2020.
  10. 10. Angelini E., Grassini S. Underwater corrosion of metallic heritage artefacts, Corrosion and conservation of cultural heritage metallic artefacts, 2013, 236–259.
  11. 11. Angelini E. et al. Atmospheric corrosion of bronze artefacts in museum indoor environments, EUROCORR 2019. In: Proceedings of the European Corrosion Congress, 9-13 September 2019, Seville, Spain, 2019, (on electronic media, unpaged).
  12. 12. Lane H. The conservation and storage of lead coins in the department of coins and medals, Recent Advances in Conservation and Analysis of Artefacts, 1987, 149–153.
  13. 13. Tétreault J. et al. Corrosion of copper and lead by formaldehyde, formic and acetic acids vapours, Studies in Conservation, 2003, 48, 237–250.
  14. 14. Pecenova Z., Kouril M. Protection of historical lead against acetic acid vapour, KOM – Corrosion and Material Protection Journal, 2016, 60 (1), 28–34.
  15. 15. Prosek T. et al. Real-time monitoring of indoor air corrosivity in cultural heritage institutions with metallic electrical resistance sensors, Studies in Conservation, 2013, 58, 117–128.
  16. 16. Oesch S., Faller M. Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures, Corrosion Science, 1997, 39(9), 1505–1530.
  17. 17. Strandberg H. et al. The Atmospheric corrosion of statue bronzes exposed to SO2 and NO2. Materials and Corrosion/Werkstoffe und Korrosion, 1997, 48 (11) 721–730.
  18. 18. Lindström R. The Atmospheric Corrosion of Zinc in the Presence of NaCl. Journal of Electrochemical Society, 2000, 147 (1751).
  19. 19. García-Segura A. et al. Influence of gaseous pollutants and their synergistic effects on the aging of reflector materials for concentrating solar thermal technologies. Solar Energy Materials and Solar Cells, 2019, 200, 2–17.
  20. 20. Vera R. et al. Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy. Corrosion Science, 2006, 48 (10) p. 2882–2900.
  21. 21. Qafsaoui W. et al. Corrosion protection of bronze using 2,5dimercapto1,3,4thiadiazole as organic inhibitor: spectroscopic and electrochemical investigations, Journal of Applied Electrochemistry, 2019, 49, 823–837.
  22. 22. Ingo G. M. et al. Surface studies of patinas and metallurgical features of uncommon high-tin bronze artefacts from the Italic necropolises of ancient Abruzzo (Central Italy), Applied Surface Science. 2019, 470, 74-83.
  23. 23. Fabrizi L. et al. The application of non-destructive techniques for the study of Corrosion patinas of ten Roman silver coins: The case of the medieval Grosso Romanino, Microchemical Journal, 2019, 145, 419-427.
  24. 24. ISO 8407:2009. Corrosion of metals and alloys – Removal of corrosion products from corrosion test specimens, 2009.
  25. 25. Selwyn L. et al. Lead (Pb), In: Metals and Corrosion: A Handbook for the Conservation Professional. 1st ed., Canadian Conservation Institute: Canada, 2004, 115-123. ISBN 0-662-37984-5.
  26. 26. Costa V., Urban F. Lead and its alloys: metallurgy, deterioration and conservation, Reviews in Conservation, 2005, 6, 42-68.
  27. 27. Brimblecombe P. The composition of museum atmospheres, Atmospheric Environment, 1990, 24B, 1-8.
  28. 28. Kouřil M. et al. Lead Corrosion and Corrosivity Classification in Archives, Museums, and Churches, Materials, 2022, 15 (2), 639.
  29. 29. Švadlena J. et al. Protective ability of lead corrosion products in indoor atmosphere with acetic acid vapours, KOM – Corrosion and Material Protection Journal, 2021, 65 (4), 1-6.
  30. 30. Strachotová K. et al. High-sensitivity sensors for monitoring of lead atmospheric corrosion, In: Proceedings 30th Anniversary International Conference on Metallurgy and Materials, METAL 2021, 26-28 May 2021, Brno, Czech Republic, 2021, 639-941. ISBN: 978-80-87294-99-4
  31. 31. Majtás D., Fialová P. Optical evaluation of corrosion products using colorimetric spectroscopy, In: Proceedings 28th International Conference on Metallurgy and Materials METAL 2019, 22-24 May 2019, Brno, Czech Republic. 2019, 1607-1614. ISBN: 978-80-87294-92-5
  32. 32. Majtás D. et al. Failure of electric products by H2S, KOM – Corrosion and Material Protection Journal, 62 (2), 2018, 71–77.
  33. 33. Watt J. et al. (Eds.) The Effects of Air Pollution on Cultural Heritage, 2009, ISBN: 978-0-387-84892-1
DOI: https://doi.org/10.2478/kom-2022-0016 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 126 - 135
Published on: Feb 10, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 D. Majtás, P. Mácová, I. Adámková, A. Viani, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.