Have a personal or library account? Click to login
Corrosive synergic effects of acetic acid and atmospheric pollutants on lead and zinc Cover

Corrosive synergic effects of acetic acid and atmospheric pollutants on lead and zinc

Open Access
|Feb 2023

References

  1. 1. Gibson, L.T. and C.M. Watt, Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corrosion Science, 2010. 52(1): p. 172-178.
  2. 2. Niklasson, A., L.-G. Johansson, and J.-E. Svensson, The influence of relative humidity and temperature on the acetic acid vapour-induced atmospheric corrosion of lead. Corrosion Science, 2008. 50(11): p. 3031-3037.
  3. 3. Pecenová, Z. and M. Kouřil, Protection of historical lead against acetic acid vapour. Koroze a ochrana materialu, 2016. 60(1): p. 28-34.
  4. 4. Puglieri, T.S., D.L.A. de Faria, and A. Cavicchioli, Indoor corrosion of Pb: Effect of formaldehyde concentration and relative humidity investigated by Raman microscopy. Vibrational Spectroscopy, 2014. 71: p. 24-29.
  5. 5. Qiu, P., D. Persson, and C. Leygraf, Initial Atmospheric Corrosion of Zinc Induced by Carboxylic Acids: A Quantitative In Situ Study. Journal of The Electrochemical Society, 2009. 156(12).
  6. 6. Tétreault, J., J. Sirois, and E. Stamatopoulou, Studies of lead corrosion in acetic acid environments. Studies in Conservation, 2013. 43(1): p. 17-32.
  7. 7. Kouril, M., et al., Lead Corrosion and Corrosivity Classification in Archives, Museums, and Churches. Materials (Basel), 2022. 15(2).
  8. 8. Prosek, T., et al., Application of automated electrical resistance sensors for measurement of corrosion rate of copper, bronze and iron in model indoor atmospheres containing short-chain volatile carboxylic acids. Corrosion Science, 2014. 87: p. 376-382.
  9. 9. Graedel, T.E., Corrosion Mechanisms for Zinc Exposed to the Atmosphere. J. Electrochem. Soc, 1989. 136: p. 193C.
  10. 10. S. Oesch, M.F., Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures. Corrosion Science, 1997. 39(9): p. 1505-1530.
  11. 11. Strandberg, H., L.G. Johansson, and O. Lindqvist, The Atmospheric corrosion of statue bronzes exposed to SO2 and NO2. Materials and Corrosion/Werkstoffe und Korrosion, 1997. 48(11): p. 721-730.
  12. 12. Lindström, R., The Atmospheric Corrosion of Zinc in the Presence of NaCl. J. Electrochem. Soc, 2000. 147(1751).
  13. 13. García-Segura, A., et al., Influence of gaseous pollutants and their synergistic effects on the aging of reflector materials for concentrating solar thermal technologies. Solar Energy Materials and Solar Cells, 2019. 200.
  14. 14. Vera, R., D. Delgado, and B.M. Rosales, Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy. Corrosion Science, 2006. 48(10): p. 2882-2900.
  15. 15. Kouril, M., et al., Corrosion monitoring in archives by the electrical resistance technique. Journal of Cultural Heritage, 2014. 15(2): p. 99-103.
DOI: https://doi.org/10.2478/kom-2022-0015 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 113 - 125
Published on: Feb 10, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 M. Reiser, F. Sihlovec, L. Beaudouin-Goujon, M. Kouřil, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.