Have a personal or library account? Click to login
Optimisation of surface characteristics of standard duplex stainless for bio-applications by using electrophoretic deposition: A brief review Cover

Optimisation of surface characteristics of standard duplex stainless for bio-applications by using electrophoretic deposition: A brief review

Open Access
|Feb 2023

References

  1. 1. B. Basu, D. Katti and A. Kumar, Advanced Biomaterials Fundamentals, Processing, and Applications, John Wiley & Sons, Inc., 2009. https://doi.org/10.1002/9780470891315
  2. 2. C. M. Agrawal, J. L. Ong, M. R. Appleford and G. Mani, Introduction to biomaterials basic theory with engineering applications, Cambridge University Press, First edition, 2014.
  3. 3. N. B. Shiny and S. Gnanavel, Surface Modification of 316L stainless steel with hydroxyapatite for dental implants, Int. J. Control Theory Appl. 2016, 9, 213–220.
  4. 4. Y. Y. Shi, M. Li, Q. Liu, Z. J. Jia, X. C. Xu, Y. Cheng and Y. F. Zheng, Electrophoretic deposition of graphene oxide reinforced chitosan–hydroxyapatite nanocomposite coatings on Ti substrate, J. Mater. Sci.: Mater. Med., 2016, 27, 1–13. https://doi.org/10.1007/s10856-015-5634-9
  5. 5. A. R. Boccaccini, S. Keim, R. Ma, Y. Li and I. Zhitomirsky, Electrophoretic deposition of biomaterials, J. R. Soc. Interface, 2010, 7, S581–S613. https://doi.org/10.1098/rsif.2010.0156.focus
  6. 6. L. Oakes, Controlling Nanomaterial Assembly to Improve Material Performance in Energy Storage Electrodes, Ph.D. Thesis, Vanderbilt University, United State, 2016.
  7. 7. A. A. White and S. M. Best, Hydroxyapatite–carbon nano-tube composites for biomedical applications: a review, Int. J. Appl. Ceram. Technol., 2007, 4, 1–13. https://doi.org/10.1111/j.1744-7402.2007.02113.x
  8. 8. F. Alexander, Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: Mechanisms and development of new bioactive materials based on polysaccharides, Ph.D. thesis, University of Erlangen, Germany, 2015.
  9. 9. A. S. Hammood, M. A. S. Mahdi, L. Thair and H. Haddad, Evaluating the effect of hydroxyapatite-chitosan coating on the corrosion behavior of 2205 duplex stainless steel for biomedical applications, Mater. Res. Express., 2019, 6, 1–30. https://doi.org/10.1088/2053-1591/ab2493
  10. 10. N. Thi Thom, P. Thi Nam, N. Thu Phuong, C. Thi Hong, N. Van Trang, N. Thi Xuyen and D. Thi Mai Thanh, Electrodeposition of hydroxyapatite/functionalized carbon nanotubes (HAp/fCNTs) coatings on the surface of 316L stainless steel, Vietnam. J. Sci. Technol., 2017, 55, 706–715. https://doi.org/10.15625/2525-2518/55/6/9153
  11. 11. S. H. Kasim and A. H. Hashim, Electrophoretic deposition of multi-walled carbon nanotubes on stainless steel (SS) foils, J. Ind. Technol., 2010, 19, 139–148.
  12. 12. A. Francis, K. Krishnakumar, and Dineshkumar, Carbon nanotube: its functionalization and applications in targeted drug delivery system, Int. J. Pharm. Technol., 2020, 12, 7004–7022. https://doi.org/10.32318/IJPT/0975-766X/12(1).7004-7022
  13. 13. L. Tang, Q. Xiao, Y. Mei, S. He, Z. Zhang, R. Wang and W. Wang, Insights on functionalized carbon nanotubes for cancer theranostics, J. Nanobiotechnol., 2021, 19, 1–28. https://doi.org/10.1186/s12951-021-01174-y
  14. 14. X. Dong, L. Liu, D. Zhu, H. Zhang, Y. Li, and X. Leng, Effects of carboxylated multiwalled carbon nanotubes on the function of macrophages, J. Nanomater., 2015. https://dx.doi.org/10.1155/2015/638760
  15. 15. C. Zhu, W. Wang, J. Zeng, C. Lu, L. Zhou and J. Chang, Interactive relationship between the superheat, interfacial heat transfer, deposited film and microstructure in strip casting of duplex stainless steel, ISIJ Int., 2019, 59, 880–888. https://doi.org/10.2355/isijinternational.ISIJINT-2018-747
  16. 16. I. Alvarez-Armas, Duplex stainless steels: brief history and some recent alloys, Recent Pat. Mech. Eng., 2008, 1, 51-57. https://www.ingentaconnect.com/contentone/ben/meng/2008/00000001/00000001/art00006?crawler=true
  17. 17. D. E. J. Talbot and J. D. R. Talbot, Corrosion science and technology, CRC Press, Third Edition, 2018.
  18. 18. T. Matsushita, Orthopaedic applications of metallic biomaterials, In: Niinomi, M (ed.) Metals for Biomedical Devices, Woodhead Publishing Series in Biomaterials, UK, 2010, 329–354. https://doi.org/10.1533/9781845699246.4.329
  19. 19. A. Mahajan and S. S. Sidhu, Surface modification of metallic biomaterials for enhanced functionality: A review, Mater. Technol., 2017, 33, 93-105. https://doi.org/10.1080/10667857.2017.1377971
  20. 20. O. O. Abegunde, E. T. Akinlabi, O. P. Oladijo, S. Akin-labi and A. U. Ude, Overview of thin film deposition techniques, AIMS. Mater. Sci., 2019, 6, 174–199. https://doi.org/10.3934/matersci.2019.2.174
  21. 21. M. Idrees and A. Z. Jebakumar, A review on corrosion scenario of bio implants in human body, Am. J. Biol. Pharm. Res., 2014, 1, 100–104.
  22. 22. K. Holmberg and A. Matthews, Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering, Second Edition, Elsevier, 2009.
  23. 23. J. R. Davis, Surface Engineering for Corrosion and Wear Resistance, ASM International, 2001. ISBN: 978-0-87170-700-0
  24. 24. A. S. Hammood, M. S. Naser and Z. S. Radeef, Electrophoretic Deposition of Nanocomposite Hydroxyapatite/Titania Coating on 2205 Duplex Stainless Steel Substrate, The Journal of the Minerals, JOM., 2021, 73, 524–533. https://doi.org/10.1007/s11837-020-04437-5
  25. 25. C. Wen, Surface coating and modification of metallic biomaterials, Woodhead Publishing, Elsevier Ltd., 2015. ISBN 978-1-78242-303-4 https://doi.org/10.1016/C2014-0-02668-8
  26. 26. K. Duan and R. Wang, Surface modifications of bone implants through wet chemistry, J. Mater. Chem., 2006, 16, 2309–2321. https://doi.org/10.1039/b517634d
  27. 27. Y. Oshida, Hydroxyapatite synthesis and applications, Momentum Press, 2014. ISBN 9781606506745 https://doi.org/10.5643/9781606506745
  28. 28. I. V. Antoniac, Handbook of bioceramics and biocomposites, Springer Cham, 2016. ISBN 978-3-319-12460-5 https://doi.org/10.1007/978-3-319-12460-5
  29. 29. S. Rujitanapanicha, P. Kumpapanb and P. Wanjanoic, Synthesis of Hydroxyapatite from Oyster Shell via Precipitation, Energy. Procedia., 2014, 56, 112–117. https://doi.org/10.1016/j.egypro.2014.07.138
  30. 30. M. Javidi, S. Javadpour, M. E. Bahrololoom and J. Ma, Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel, Mater. Sci. Eng. C., 2008, 28, 1509-1515. https://doi.org/10.1016/j.msec.2008.04.003
  31. 31. A. J. Nathanael, D. Mangalaraj and N. Ponpandian, Controlled growth and investigations on the morphology and mechanical properties of hydroxyapatite/titania nanocomposite thin films, Compos. Sci. Technol., 2010, 70, 1645–1651. https://doi.org/10.1016/j.compscitech.2010.06. 010
  32. 32. S. Morais, Multi-Walled Carbon Nanotubes, MDPI, 2019. https://doi.org/10.3390/books978-3-03921-230-9
  33. 33. T. T. Nguyen, N. T. Pham, T. T. M. Dinh, T. T. Vu, H. S. Nguyen and L. D. Tran, Electrodeposition of Hydroxyapatite-Multiwalled Carbon Nanotube Nanocomposite on Ti6Al4V, Adv. Polym. Technol., 2020, ID 8639687, 1-10. https://doi.org/10.1155/2020/8639687
  34. 34. H. Maleki-Ghaleh and J. Khalil-Allafi, Effect of hydroxyapatite-titanium-MWCNTs composite coating fabricated by electrophoretic deposition on corrosion and cellular behavior of NiTi alloy, Mater. Corros., 2019, 70, 2128–2138. https://doi.org/10.1002/maco.201910940
  35. 35. Y. Bai, M. P. Neupane, S. Park, M. H. Lee, T. S. Bae, F. Watari and M. Uo, Electrophoretic deposition of carbon nanotubes–hydroxyapatite nanocomposites on titanium substrate, Mater. Sci. Eng. C., 2010, 30, 1043–1049. https://doi.org/10.1016/j.msec.2010.05.007
  36. 36. S. Heise, C. Forster, S. Heer, H. Qi, J. Zhou, S. Virtanen, T. Lu and A. R. Boccaccini, Electrophoretic deposition of gelatine nanoparticle/chitosan coatings, Electrochim. Acta., 2019, 307, 318-325. https://doi.org/10.1016/j.electacta.2019.03.145
  37. 37. J. H. Dickerson and A. R. Boccaccini, Electrophoretic deposition of nanomaterials, Springer, 2012. https://doi.org/10.1007/978-1-4419-9730-2
  38. 38. M. Aliofkhazraei and A. S. H. Makhlouf, Handbook of nanoelectrochemistry: Electrochemical synthesis methods, properties, and characterization techniques, Springer 2016. https://doi.org/10.1007/978-3-319-15266-0
  39. 39. S. K. Loghmani, M. Farrokhi-Rad and T. Shahrabi, Effect of polyethylene glycol on the electrophoretic deposition of hydroxyapatite nanoparticles in isopropanol, Ceram. Int., 2013, 39, 7043-7051. http://dx.doi.org/10.1016/j.ceramint.2013.02.043
  40. 40. M. Farrokhi-Rad, Effect of dispersants on the electro-phoretic deposition of hydroxyapatite-carbon nanotubes nanocomposite coatings, J. Am. Ceram. Soc., 2016, 99, 2947–2955. https://doi.org/10.1111/jace.14338
  41. 41. L. Besra and M. Liu, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater Sci., 2007, 52, 1–61. http://doi.org/10.1016/j.pmatsci.2006.07.001
  42. 42. J. M. Geeson, Electrophoretic deposition of graphene enhanced aluminum and bismuth trioxide nanothermite thin films, MSc. thesis, University of Missouri, USA, 2016.
  43. 43. A. Abdeltawab, M. Shoeib, S. Mohamed, Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions, Surf. Coat. Technol., 2011, 206, 43–48. http://dx.doi.org/10.1016/j.pmatsci.2016.03.002
  44. 44. I. Zhitomirsky, Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers, J. Eur. Ceram. Soc., 1998, 18, 849–856. https://doi.org/10.1016/s0955-2219(97)00213-6
  45. 45. M. Diba, D. W. H. Fam, A. R. Boccaccini and M. S. P. Shaffer, Electrophoretic deposition of graphene-related materials: A review of the fundamentals, Prog. Mater Sci., 2016, 82, 83–117. http://dx.doi.org/10.1016/j.pmatsci.2016.03.002
DOI: https://doi.org/10.2478/kom-2022-0013 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 96 - 102
Published on: Feb 10, 2023
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Zainab Albaraqaawee, Shaymaa Abbas Abdulsada, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.