Have a personal or library account? Click to login
Experimental studies on the corrosion inhibition of mild steel by 1-(phenylamino-1,3,4-thiadiazol-5-yl)-3-phenyl-3-oxopropan complemented with DFT Modeling Cover

Experimental studies on the corrosion inhibition of mild steel by 1-(phenylamino-1,3,4-thiadiazol-5-yl)-3-phenyl-3-oxopropan complemented with DFT Modeling

By: A. Alamiery,  J.M. Ali and  W.N.R. Isahak  
Open Access
|Apr 2022

Abstract

1-(Phenylamino-1,3,4-thiadiazol-5-yl)-3-phenyl-3-oxopropan (PTPO) was selected as the investigated material for studying the protection performance for mild steel in 1 mol L-1 hydrochloric acid solution. The inhibitor was assessed using weight loss measurements complemented with morphological analytical techniques and density functional theory (DFT) modelling. The PTPO demonstrated significant inhibitive efficacy of 95.4% in the presence of 500 ppm at 303 K. The protection efficiency increases with the concentration increasing from 100 to 500 ppm, and no significant effect after 500 ppm. Furthermore, gravimetric findings reveal that the protection efficiency at 500 ppm PTPO increases with immersion period and increasing temperature (303-333 K), due to the effective adsorption of PTPO on the mild steel surface, and the protection efficiency value is 95.8% at 48 h of exposure and 95.4%, 95.4%, 95.7% and 95.9% at 303, 313, 323 and 333 K, respectively. The adsorption of PTPO on the mild steel surface obeyed the Langmuir adsorption isotherm model and revealing the mode of chemisorption adsorption. According to the DFT calculations, protection by PTPO is essentially performed by the heteroatoms in the inhibitor molecules which represented the adsorption sites, and the aromatic rings increase the electrostatic interaction between the PTPO molecules and the mild steel surface. The surface morphological studies, weight loss measurements, and DFT computational studies are in good agreement and that the selected corrosion inhibitor is adsorbed on the mild steel surface to form a protected layer on the surface of mild steel against the hydrochloric acid solution.

DOI: https://doi.org/10.2478/kom-2022-0002 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 7 - 15
Published on: Apr 18, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 A. Alamiery, J.M. Ali, W.N.R. Isahak, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.