Have a personal or library account? Click to login
Growth kinetics of diiron boride (Fe2B) layer on a carbon steel by four approaches Cover

Growth kinetics of diiron boride (Fe2B) layer on a carbon steel by four approaches

By: B. Bouarour,  M. Keddam and  B. Boumaali  
Open Access
|Apr 2022

References

  1. 1. Kulka M., Trends in thermochemical techniques of boriding, in: Current Trends in Boriding, Engineering Materials. Springer: Cham, Switzerland, 2019.
  2. 2. Campos I., Oseguera J., Figueroa U., Garcıá J. A., Bautista O., Kelemenis K., Kinetic study of boron diffusion in the paste-boriding process, Materials Science and Engineering: A 2003, 352, 261-265. https://doi.org/10.1016/S0921-5093(02)00910-3
  3. 3. Ozbek I., Mechanical Properties and Kinetics of Borided AISI M50 Bearing Steel, Arabian Journal of Science Engi-neering 2014, 39, 5185–5192 (2014). https://doi.org/10.1007/s13369-014-1207-3
  4. 4. Türkmen İ., Yalamaç E., Effect of Alternative Boronizing Mixtures on Boride Layer and Tribological Behaviour of Boronized SAE 1020 Steel, Metals and Materials International 2021, in press. https://doi.org/10.1007/s12540-021-00987-8
  5. 5. Günen A., Karahan İ. H., Karakaş M.S., Kurt B., Kanca Y., Çay V.V., Yıldız M., Properties and Corrosion Resistance of AISI H13 Hot-Work Tool Steel with Borided B4C Powders, Metals and Materials. International 2020, 26, 1329–1340. https://doi.org/10.1007/s12540-019-00421-0
  6. 6. Kayali Y., Kara R., Investigation of Wear Behavior and Diffusion Kinetic Values of Boronized Hardox-450 Steel, Protection of Metals and Physical Chemistry of Surfaces 2021, 57, 1025–1033. https://doi.org/10.1134/S2070205121050129
  7. 7. Campos-Silva I. and Ortiz-Domínguez M., Modelling the growth of Fe2B layers obtained by the paste boriding process in AISI 1018 steel, International Journal of Micro-structure and Materials Properties 2010, 5, 26-38. doi: 10.1504/IJMMP.2010.032499
  8. 8. Ortiz-Domínguez M., Gómez-Vargas O.A., Ares de Parga G., Torres-Santiago G., Velázquez-Mancilla R., Castellanos-Escamilla V.A., Mendoza-Camargo J., Trujillo-Sánchez R., Modeling of the Growth Kinetics of Boride Layers in Powder-Pack Borided ASTM A36 Steel Based on Two Different Approaches”, Advances in Materials Science and Engineering 2019, ArticleID 5985617. https://doi.org/10.1155/2019/5985617
  9. 9. Türkmen I., Yalamaç E., Keddam M, Investigation of tribological behaviour and diffusion model of Fe2B layer formed by the pack-boriding process on SAE 1020 steel, Surface and Coatings Technology 2019, 377, 124888. doi: 10.1016/j.surfcoat.2019.08.017
  10. 10. Nait Abdellah Z., Keddam M., Jurči P., Simulation of boronizing kinetics of ASTM A36 steel with the alternative kinetic model and the integral method, Koroze a Ochrana materialu 2021, 65, 33-39. doi: https://doi.org/10.2478/kom-2021-0004
  11. 11. Keddam M., Kulka M., The mean diffusion coefficient method for boriding kinetics of Armco iron, Metal Science and Heat treatment 2020, 62, 326–330. https://doi.org/10.1007/s11041-020-00562-9
  12. 12. Yu L. G., Chen X.J., Khor K.A., Sundararajan G., FeB/Fe2B phase transformation during SPS pack-boriding: Boride layer growth kinetics, Acta Materialia 2005,53,2361-2368. doi: 10.1016/j.actamat.2005.01.043.
  13. 13. Okamoto H., B-Fe (boron-iron), Journal of Phase Equlibria and Diffusion 2004, 25, 297–298. https://doi.org/10.1007/s11669-004-0128-3
  14. 14. Makuch N., Dziarski P., Kulka M., Keddam M, Growth kinetics and some mechanical properties of plasma paste borided layers produced on Nimonic 80A-alloy, Materials 2021, 14, 5146. https://doi.org/10.3390/ma14185146
  15. 15. Doñu Ruiz M.A., Sánchez Huitron D., Garcia Bustos E.D., Cortés Suárez V.J., López Perrusquia N., Effect of the Boron Powder on Surface AISI W2 Steel: Experiments and Modelling, Advances in Materials Science and Engineering 2021, 2021, Article ID 5548004. https://doi.org/10.1155/2021/5548004
  16. 16. Perrusquia, N., Doñu Ruiz, M., Oliva, E., & Suarez, V. Diffusion of Hard Coatings on Ductile Cast Iron., MRS Proceedings 2012, 1481, 105-112. doi: 10.1557/opl.2012. 1638
  17. 17. Hernández-Sánchez E. and Cesar Velázquez J., Kinetics of Growth of Iron Boride Layers on a Low-Carbon Steel Surface, Laboratory Unit Operations and Experimental Methods in Chemical Engineering, Omar M. Basha and Badie I. Morsi, IntechOpen, 2018. doi: 10.5772/intechopen. 73592.
  18. 18. Ruiz-Trabolsi P.A., Velázquez J.C., Orozco-Álvarez C., Carrera-Espinoza R., Yescas-Hernández J.A., González-Arévalo N.E., Hernández-Sánchez E., Kinetics of the Boride Layers Obtained on AISI 1018 Steel by Considering the Amount of Matter Involved, Coatings 2021, 11, 259. https://doi.org/10.3390/coatings11020259
  19. 19. Merced Martínez J., Vargas M., Arenas A., Víctor Gutiérrez H., Ana Herrera M., Energía de activación para la difusión del boro durante la borurización de un acero de bajo carbono, Revista Iberoamericana de Ciencias 2016, 3, 18-27.
  20. 20. Uslu I., Comert H., Ipek M., Ozdemir O., Bindal C., Evaluation of borides formed on AISI P20 steel, Materials and Design 2007, 28, 55-61. doi: 10.1016/j.matdes.2005.06.013
  21. 21. Türkmen I., Yalamaç E. Growth of the Fe2B layer on SAE 1020 steel employed a boron source of H3BO3 during the powder-pack boriding method, Journal of Alloys and Compounds 2018, 744, 658-666. doi: 10.1016/j.jallcom. 2018.02.118
DOI: https://doi.org/10.2478/kom-2022-0001 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 1 - 6
Published on: Apr 18, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 B. Bouarour, M. Keddam, B. Boumaali, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.