Have a personal or library account? Click to login
Corrosion resistance of the biodegradable ZE41 magnesium alloy treated by unconventional fluoride conversion coating Cover

Corrosion resistance of the biodegradable ZE41 magnesium alloy treated by unconventional fluoride conversion coating

Open Access
|Jan 2020

References

  1. 1. Gholami, M.; Mhaede, M.; Pastorek, F.; Altenberger, I.; Hadzima, B.; Wollmann, M.; Wagner, L.: Corrosion Behavior and Mechanical Properties of Ultrafine-Grained Pure Copper with Potential as a Biomaterial. Advanced Engineering Materials, 2016, 18 (4), 615–623. https://doi.org/10.1002/adem.201500269.10.1002/adem.201500269
  2. 2. Kirkland, N. T.; Birbilis, N.: Magnesium Biomaterials; SpringerBriefs in Materials; Springer International Publishing: Cham, 2014, 148. https://doi.org/10.1007/978-3-319-02123-2.10.1007/978-3-319-02123-2
  3. 3. Duygulu, O.; Kaya, R. A.; Oktay, G.; Kaya, A. A. Investigation on the Potential of Magnesium Alloy AZ31 as a Bone Implant. Materials Science Forum, 2007, 546–549, 421–424. https://doi.org/10.4028/www.scientific.net/MSF.546-549.421.10.4028/www.scientific.net/MSF.546-549.421
  4. 4. Ren, Y.; Huang, J.; Zhang, B.; Yang, K.: Preliminary Study of Biodegradation of AZ31B Magnesium Alloy. Frontiers of Materials Science in China, 2007, 1 (4), 401–404. https://doi.org/10.1007/s11706-007-0073-2.10.1007/s11706-007-0073-2
  5. 5. Hiromoto, S.; Inoue, M.; Taguchi, T.; Yamane, M.; Ohtsu, N.: In vitro and in vivo Biocompatibility and Corrosion Behaviour of a Bioabsorbable Magnesium Alloy Coated with Octacalcium Phosphate and Hydroxyapatite. Acta Biomaterialia, 2015, 11, 520–530. https://doi.org/10.1016/J.ACTBIO.2014.09.026.10.1016/J.ACTBIO.2014.09.026
  6. 6. Yu, W.; Zhao, H.; Ding, Z.; Zhang, Z.; Sun, B.; Shen, J.; Chen, S.; Zhang, B.; Yang, K.; Liu, M.; et al.: In vitro and in vivo Evaluation of MgF2 Coated AZ31 Magnesium Alloy Porous Scaffolds for Bone Regeneration. Colloids and Surfaces B: Biointerfaces, 2017, 149, 330–340. https://doi.org/10.1016/J.COLSURFB.2016.10.037.10.1016/J.COLSURFB.2016.10.037
  7. 7. Li, H.; Zheng, Y.; Qin, L.: Progress of Biodegradable Metals. Progress in Natural Science: Materials International, 2014, 24 (5), 414–422. https://doi.org/10.1016/J.PNSC.2014.08.014.10.1016/J.PNSC.2014.08.014
  8. 8. Radha, R.; Sreekanth, D.: Insight of Magnesium Alloys and Composites for Orthopedic Implant Applications – a Review. Journal of Magnesium and Alloys. National Engg. Reaserch Center for Magnesium Alloys September 1, 2017, 286–312. https://doi.org/10.1016/j.jma.2017.08.003.10.1016/j.jma.2017.08.003
  9. 9. Fischerauer, S. F.; Kraus, T.; Wu, X.; Tangl, S.; Sorantin, E.; Hänzi, A. C.; Löffler, J. F.; Uggowitzer, P. J.; Weinberg, A. M.: In Vivo Degradation Performance of Micro-Arc-Oxidized Magnesium Implants: A Micro-CT Study in Rats. Acta Biomaterialia, 2013, 9 (2), 5411–5420. https://doi.org/10.1016/j.actbio.2012.09.017.10.1016/j.actbio.2012.09.01723022544
  10. 10. Minárik, P.; Král, R.; Hadzima, B.: Substantially Higher Corrosion Resistance in AE42 Magnesium Alloy through Corrosion Layer Stabilization by ECAP Treatment. Acta Physica Polonica A, 2012, 122 (3), 614–617. https://doi.org/10.12693/APhysPolA.122.614.10.12693/APhysPolA.122.614
  11. 11. Gholami-Kermanshahi, M.; Neubert, V.-D.; Tavakoli, M.; Pastorek, F.; Smola, B.; Neubert, V.: Effect of ECAP Processing on Corrosion Behavior and Mechanical Properties of the ZFW MP Magnesium Alloy as a Biodegradable Implant Material. Advanced Engineering Materials, 2018, 20 (10), 1800121. https://doi.org/10.1002/adem.201800121.10.1002/adem.201800121
  12. 12. Mhaede, M.; Pastorek, F.; Hadzima, B.: Influence of Shot Peening on Corrosion Properties of Biocompatible Magnesium Alloy AZ31 Coated by Dicalcium Phosphate Dihydrate (DCPD). Materials Science and Engineering: C, 2014, 39, 330–335. https://doi.org/10.1016/J.MSEC.2014. 03.023.10.1016/J.MSEC.2014.03.023
  13. 13. Kajánek, D.; Hadzima, B.; Pastorek, F.; Neslušan Jacková, M.: Corrosion Performance of AZ31 Magnesium Alloy Treated by Ultrasonic Impact Peening (UIP). Materials Today: Proceedings, 2018, 5 (13), 26687–26692. https://doi.org/10.1016/J.MATPR.2018.08.136.10.1016/J.MATPR.2018.08.136
  14. 14. Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T.: In Vitro Corrosion and Biocompatibility of Binary Magnesium Alloys. Biomaterials, 2009, 30 (4), 484–498. https://doi.org/10.1016/J.BIOMATERIALS.2008.10.021.10.1016/J..2008.10.021
  15. 15. Eddy Jai Poinern, G.; Brundavanam, S.; Fawcett, D.: Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Bio-degradable Orthopaedic Implant. American Journal of Biomedical Engineering, 2013, 2 (6), 218–240. https://doi.org/10.5923/j.ajbe.20120206.02.10.5923/j.ajbe.20120206.02
  16. 16. Li, J.; Huang, J.; Tian, Y.; Liu, C.: Corrosion Action and Passivation Mechanism of Magnesium Alloy in Fluoride Solution. Transactions of Nonferrous Metals Society of China, 2009, 19 (1), 50–54. https://doi.org/10.1016/S1003-6326(08)60227-7.10.1016/S1003-6326(08)60227-7
  17. 17. Mao, L.; Yuan, G.; Niu, J.; Zong, Y.; Ding, W.: In Vitro Degradation Behavior and Biocompatibility of Mg–Nd– Zn–Zr Alloy by Hydrofluoric Acid Treatment. Materials Science and Engineering: C, 2013, 33 (1), 242–250. https://doi.org/10.1016/j.msec.2012.08.036.10.1016/j.msec.2012.08.03625428068
  18. 18. Yan, T.; Tan, L.; Xiong, D.; Liu, X.; Zhang, B.; Yang, K.: Fluoride Treatment and in Vitro Corrosion Behavior of an AZ31B Magnesium Alloy. Materials Science and Engineering: C, 2010, 30 (5), 740–748. https://doi.org/10.1016/j.msec.2010.03.007.10.1016/j.msec.2010.03.007
  19. 19. Ohse, T.; Tsubakino, H.; Yamamoto, A.: Surface Modification on Magnesium Alloys by Coating with Magnesium Fluorides. Materials Science Forum, 2005, 475–479, 505–508. https://doi.org/10.4028/www.scientific.net/MSF.475-479.505.10.4028/www.scientific.net/MSF.475-479.505
  20. 20. Yamamoto, A.; Terawaki, T.; Tsubakino, H.: Microstructures and Corrosion Properties on Fluoride Treated Magnesium Alloy. Materials Transactions, 2008, 49 (5), 1042–104. https://doi.org/10.2320/matertrans.MC200704.10.2320/matertrans.MC200704
  21. 21. Fintová, S.; Drábiková, J.; Pastorek, F.; Tkacz, J.; Kuběna, I.; Trško, L.; Hadzima, B.; Minda, J.; Doležal, P.; Wasserbauer, J.; et al.: Improvement of Electrochemical Corrosion Characteristics of AZ61 Magnesium Alloy with Unconventional Fluoride Conversion Coatings. Surface and Coatings Technology, 2019, 357(15), 638–650. https://doi.org/10.1016/j.surfcoat.2018.10.038.10.1016/j.surfcoat.2018.10.038
  22. 22. Chun-Yan, Z.; Rong-Chang, Z.; Cheng-Long, L.; Jia-Cheng, G.: Comparison of Calcium Phosphate Coatings on Mg–Al and Mg–Ca Alloys and Their Corrosion Behavior in Hank’s Solution. Surface and Coatings Technology, 2010, 204 (21–22), 3636–3640. https://doi.org/10.1016/J.SURFCOAT.2010.04.038.10.1016/J.SURFCOAT.2010.04.038
  23. 23. Yang, J. X.; Cui, F. Z.; Yin, Q. S.; Zhang, Y.; Zhang, T.; Wang, X. M.: Characterization and Degradation Study of Calcium Phosphate Coating on Magnesium Alloy Bone Implant In Vitro. IEEE Transactions on Plasma Science, 2009, 37 (7), 1161–1168. https://doi.org/10.1109/TPS.2009.2016664.10.1109/TPS.2009.2016664
  24. 24. Kajánek, D.; Hadzima, B.; Pastorek, F.; Neslušan Jacková, M.: Electrochemical Impedance Spectroscopy Characterization of ZW3 Magnesium Alloy Coated by DCPD Using LASV Deposition Technique. Acta Metallurgica Slovaca, 2017, 23 (2), 147–154. https://doi.org/10.12776/ams.v23i2.900.10.12776/ams.v23i2.900
  25. 25. Hadzima, B.; Mhaede, M.; Pastorek, F.: Electrochemical Characteristics of Calcium-Phosphatized AZ31 Magnesium Alloy in 0.9 % NaCl Solution. Journal of Materials Science: Materials in Medicine, 2014, 25 (5), 1227–1237. https://doi.org/10.1007/s10856-014-5161-0.10.1007/s10856-014-5161-0
  26. 26. Pastorek, F.; Hadzima, B.; Omasta, M.; Mhaede, M.: Effect of Electrodeposition Temperature on Corrosion Resistance of Calcium Phosphate. Acta Metallurgica Slovaca, 2014, 20 (2), 200–208. https://doi.org/10.12776/ams.v20i2.290.10.12776/ams.v20i2.290
  27. 27. Djokić, S. S.: Biomedical Applications, 1st ed.; Springer: US, 211, 2012.10.1007/978-1-4614-3125-1
  28. 28. Chiu, K. Y.; Wong, M. H.; Cheng, F. T.; Man, H. C.: Characterization and Corrosion Studies of Fluoride Conversion Coating on Degradable Mg Implants. Surface and Coatings Technology, 2007, 202 (3), 590–598. https://doi.org/10.1016/j.surfcoat.2007.06.035.10.1016/j.surfcoat.2007.06.035
  29. 29. Drábiková, J.; Fintová, S.; Tkacz, J.; Doležal, P.; Wasserbauer, J.: Unconventional Fluoride Conversion Coating Preparation and Characterization. Anti-Corrosion Methods and Materials, 2017, 64 (6), 613-619. https://doi.org/10.1108/ACMM-02-2017-1757.10.1108/ACMM-02-2017-1757
  30. 30. Drábiková, J.; Pastorek, F.; Fintová, S.; Doležal, P.; Wasserbauer, J.: Zvýšenie koróznej odolnosti biokompatibilnej horčíkovej zliatiny AZ61 pomocou fluoridového konverzného povlaku. 2016, 60 (5), 132–138. https://doi.org/10.1515/kom-2016-0021.10.1515/kom-2016-0021
  31. 31. Flaten, T. P.: Aluminium as a Risk Factor in Alzheimer’s Disease, with Emphasis on Drinking Water. Brain Research Bulletin, 2001, 55 (2), 187–196. https://doi.org/10.1016/S0361-9230(01)00459-2.10.1016/S0361-9230(01)00459-2
  32. 32. ASTM B80 – 15 Standard Specification for Magnesium-Alloy Sand Castings, 2015.
  33. 33. Cell Culture Media and Reagents Product Selection Guide European Edition www.corning.com/lifesciences. (accessed Jul 9, 2018).
  34. 34. Song, Y.; Shan, D.; Chen, R.; Han, E.-H.: Corrosion Characterization of Mg–8Li Alloy in NaCl Solution. Corrosion Science, 2009, 51 (5), 1087–1094. https://doi.org/10.1016/j.corsci.2009.03.011.10.1016/j.corsci.2009.03.011
  35. 35. Kuchariková, L.; Liptáková, T.; Tillová, E.; Kajánek, D.; Schmidová, E.: Role of Chemical Composition in Corrosion of Aluminum Alloys. Metals, 2018, 8 (8), 581. https://doi.org/10.3390/met8080581.10.3390/met8080581
  36. 36. Sudarshana, S.; Jagannath, N.; A. Nityananda, S.: Influence of Sulfate Ion Concentration and PH on the Corrosion of Mg–Al–Zn–Mn (GA9) Magnesium Alloy. Journal of Magnesium and Alloys, 2015, 3 (3), 258–270. https://doi.org/10.1016/J.JMA.2015.07.004.10.1016/J.JMA.2015.07.004
  37. 37. Li, C. Q.; Xu, D. K.; Chen, X.-B.; Wang, B. J.; Wu, R. Z.; Han, E. H.; Birbilis, N.: Composition and Microstructure Dependent Corrosion Behaviour of Mg-Li Alloys. Electrochimica Acta, 2018, 260, 55–64. https://doi.org/10.1016/J.ELECTACTA.2017.11.091.10.1016/J.ELECTACTA.2017.11.091
  38. 38. King, A. D.; Birbilis, N.; Scully, J. R.: Accurate Electro-chemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study. Electrochimica Acta, 2014, 121, 394–406. https://doi.org/10.1016/J.ELECTACTA.2013.12.124.10.1016/J.ELECTACTA.2013.12.124
  39. 39. Fintová, S.; Drábiková, J.; Pastorek, F.; Tkacz, J.; Kuběna, I.; Trško, L.; Hadzima, B.; Minda, J.; Doležal, P.; Wasserbauer, J.; et al.: Improvement of Electrochemical Corrosion Characteristics of AZ61 Magnesium Alloy with Unconventional Fluoride Conversion Coatings. Surface and Coatings Technology, 2019, 357, 638–650. https://doi.org/10.1016/J.SURFCOAT.2018.10.038.10.1016/J.SURFCOAT.2018.10.038
  40. 40. Feng, X.; Shi, L.-Y.; Hang, J.-Z.; Zhang, J.-P.; Fang, J.-H.; Zhong, Q.-D.: Low Temperature Synthesis of Boron Phosphide Nanocrystals. Materials Letters, 2005, 59 (8–9), 865–867. https://doi.org/10.1016/j.matlet.2004.10.067.10.1016/j.matlet.2004.10.067
  41. 41. Drábiková, J.; Fintová, S.; Doležal, P.; Wasserbauer, J.; Ptáček, P.: Characterization of Unconventional Fluoride Conversion Coating Prepared on AZ31 Magnesium Alloy; Materials Engineering - Materiálové inžinierstvo (MEMI), 2018; 24, 72-87.
  42. 42. Drábiková, J.; Pastorek, F.; Fintová, S.; Dolezal, P.; Wasserbauer, J.: Improvement of Bio-Compatible AZ61 Magnesium Alloy Corrosion Resistance by Fluoride Conversion Coating. Koroze a Ochrana Materialu, 2016, 60 (5), 132-137. https://doi.org/10.1515/kom-2016-0021.10.1515/kom-2016-0021
  43. 43. Jin, S.; Amira, S.; Ghali, E.: Electrochemical Impedance Spectroscopy Evaluation of the Corrosion Behavior of Die Cast and Thixocast AXJ530 Magnesium Alloy in Chloride Solution. Advanced Engineering Materials, 2007, 9 (1–2), 75–83. https://doi.org/10.1002/adem.200600199.10.1002/adem.200600199
  44. 44. Chen, J.; Wang, J.; Han, E.; Dong, J.; Ke, W.: AC Impedance Spectroscopy Study of the Corrosion Behavior of an AZ91 Magnesium Alloy in 0.1 M Sodium Sulfate Solution. Electrochimica Acta, 2007, 52 (9), 3299–3309. https://doi.org/10.1016/J.ELECTACTA.2006.10.007.10.1016/j.electacta.2006.10.007
DOI: https://doi.org/10.2478/kom-2019-0018 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 138 - 147
Published on: Jan 24, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 J. Drábiková, S. Fintová, P. Doležal, J. Wasserbauer, Z. Florková, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.