Have a personal or library account? Click to login
Static corrosion tests of iron-based biomaterials in the environment of simulated body fluids Cover

Static corrosion tests of iron-based biomaterials in the environment of simulated body fluids

Open Access
|Dec 2019

References

  1. 1. Zheng, Y.F.; Gu, X.N.; Witte, F.: Biodegradable metals. Mater. Sci. Eng. R Rep.2014, 77, 1–34.10.1016/j.mser.2014.01.001
  2. 2. Moravej, M.; Mantovani, D.: Biodegradable Metals for Cardiovascular Stent Application: Interests and New Opportunities. Int. J. Mol. Sci.2011, 12 (7), 4250–4270.10.3390/ijms12074250
  3. 3. Li, H.; Zheng, Y.; Qin, L.: Progress of Biodegradable Metals. Prog. Nat. Sci. Mater.2014, 24 (5), 414–422.10.1016/j.pnsc.2014.08.014
  4. 4. Cheng, J.; Liu, B.; Wu, Y.; Zheng, Y. Comparative in vitro Study on Pure Metals (Fe, Mn, Mg, Zn and W) as Biodegradable Metals. J. Mater. Sci. Technol.2013, 29 (7), 619–627.10.1016/j.jmst.2013.03.019
  5. 5. Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J. W.: Recent Advances in Biodegradable Metals for Medical Sutures: A Critical Review. Adv. Healthc. Mater.2015, 4 (13), 1915–1936.10.1002/adhm.201500189
  6. 6. Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K. U.; Willumeit, R.; Feyerabend, F.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid St. M.2008, 12 (5-6), 63–72.10.1016/j.cossms.2009.04.001
  7. 7. Zhang, E.; Chen, H.; Shen, F.: Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial. J. Mater. Sci. Mater. Med.2010, 21 (7), 2151–2163.10.1007/s10856-010-4070-0
  8. 8. Alabbasi, A.; Liyanaarachchi, S.; Kannan, M. B.: Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films.2012, 520 (23), 6841–6844.10.1016/j.tsf.2012.07.090
  9. 9. Haverová, L.; Oriňaková, R.; Oriňak, A.; Gorejová, R.; Baláž, M.; Vanýsek, P.; et al.: An In Vitro Corrosion Study of Open Cell Iron Structures with PEG Coating for Bone Replacement Applications. Metals.2018, 8 (7), 499.10.3390/met8070499
  10. 10. Yusop, A. H. M.; Daud, N. M.; Nur, H.; Kadir, M. R. A.; Hermawan, H.: Controlling the degradation kinetics of porous iron by poly (lactic-co-glycolic acid) infiltration for use as temporary medical implants. Scientific reports.2015, 5, 11194.10.1038/srep11194
  11. 11. Briones, A. V.; Sato, T.; Bigol, U. G.: Antibacterial activity of polyethylenimine/carrageenan multilayer against pathogenic bacteria. Adv. Chem. Engineer. Sci.2014, 4 (02), 233.10.4236/aces.2014.42026
  12. 12. Demir, A. G.; Previtali, B.; Biffi, C. A.: Fibre Laser Cutting and Chemical Etching of AZ31 for Manufacturing Biodegradable Stents. Adv. Mater. Sci. Eng.2013, 2013, 1–11.10.1155/2013/692635
  13. 13. Lindner, M.; Hoeges, S.; Meiners, W.; Wissenbach, K.; Smeets, R.; Telle, R.; et al.: Manufacturing of individual biodegradable bone substitute implants using selective laser melting technique. J. Biomed. Mater. Res. A.2011, 97 (4), 466–471.10.1002/jbm.a.33058
  14. 14. Hong, D.; Chou, D. T.; Velikokhatnyi, O. I.; Roy, A.; Lee, B.; Swink, I.; et al.: Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater.2016, 45, 375–386.10.1016/j.actbio.2016.08.032
  15. 15. Andani, M. T.; Moghaddam, N. S.; Haberland, C.; Dean, D.; Miller, M. J.; Elahinia, M.: Metals for bone implants. Part 1. Powder metallurgy and implant rendering. Acta Biomater.2014, 10 (10), 4058–4070.10.1016/j.actbio.2014.06.025
  16. 16. Aghion, E.; Perez, Y.: Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology. Mater. Charact.2014, 96, 78–83.10.1016/j.matchar.2014.07.012
  17. 17. Oriňaková, R.; Oriňak, A.; Bučková, L. M.; Giretová, M.; Medvecký, Ľ.; Labbanczová, E.; et al.: Iron based degradable foam structures for potential orthopedic applications. Int. J. Electrochem. Sci.2013, 8, 12451–12465.10.1016/S1452-3981(23)13279-2
  18. 18. Hrubovčáková, M.; Kupková, M.; Džupon, M.; Giretová, M.; Medvecký, Ľ.; & Džunda, R.: Biodegradable polylactic acid and polylactic acid/hydroxyapatite coated iron foams for bone replacement materials. Int. J. Electrochem. Sci.2017, 12, 11122–11136.10.20964/2017.12.53
  19. 19. Li, Y.; Jahr, H.; Lietaert, K.; Pavanram, P.; Yilmaz, A.; Fockaert, L. I.; et al.: Additively manufactured biodegradable porous iron. Acta Biomater.2018, 77, 380–393.10.1016/j.actbio.2018.07.011
  20. 20. Wen, Z., Zhang, L., Chen, C., Liu, Y., Wu, C., & Dai, C.: A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Mater. Sci. Eng. C.2013, 33 (3), 1022–1031.10.1016/j.msec.2012.10.009
  21. 21. Gorejová, R.; Haverová, L.; Oriňaková, R.; Oriňak, A.; Oriňak, M.: Recent advancements in Fe-based biodegradable materials for bone repair. J. Mater. Sci.2019, 54 (3), 1913–1947.10.1007/s10853-018-3011-z
  22. 22. Peng, M.; Liu, W.; Yang, G.; Chen, Q.; Luo, S.; Zhao, G.; Yu, L.: Investigation of the degradation mechanism of cross-linked polyethyleneimine by NMR spectroscopy. Polymer Degrad. Stab.2008, 93 (2), 476–482.10.1016/j.polymdegradstab.2007.11.007
  23. 23. Čapek, J.; Stehlíková, K.; Michalcová, A.; Msallamová, Š.; Vojtěch, D.: Microstructure, mechanical and corrosion properties of biodegradable powder metallurgical Fe-2 wt% X (X= Pd, Ag and C) alloys. Mater. Chem. Phys.2016, 181, 501–511.10.1016/j.matchemphys.2016.06.087
DOI: https://doi.org/10.2478/kom-2019-0015 | Journal eISSN: 1804-1213 | Journal ISSN: 0452-599X
Language: English
Page range: 113 - 120
Published on: Dec 21, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 R. Gorejová, R. Oriňaková, A. Oriňak, M. Kupková, M. Hrubovčáková, M. Baláž, published by Association of Czech and Slovak Corrosion Engineers
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.