References
- 1. Rakness, K. L., Ozone in drinking water treatment: process design, operation, and optimization. American Water Works Association: 2011.
- 2. Novák, P., Korozní inženýrství. Vysoká škola chemickotechnologická v Praze, Ústav kovových materiálů a korozního inženýrství: 2002.
- 3. Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution. ASTM International 2009.
- 4. Rashid, M. W. A., et al., Formation of Cr23C6 during the sensitization of AISI 304 stainless steel and its effect to pitting corrosion. Int. J. Electrochem. Sci.2012, 7 (10), 9465-9477.10.1016/S1452-3981(23)16211-0
- 5. Holzworth, M., et al., The Mechanism of Knife-Line Attack In Welded Type 347 Stainless Steel. Corrosion1951, 7 (12), 441-449.10.5006/0010-9312-7.12.441
- 6. Číhal, V.; Ježek, J., Corrosion of Stainless Steels in the Immediate Vicinity of the Weld Metal. British Corrosion Journal1972, 7 (2), 76-86.10.1179/000705972798323215
- 7. Outokumpu Corrosion Handbook. 9 ed.; Outokumpu Stainless Steel Oy: 2004.
- 8. Lu, H.; Duquette, D., The Effect of Dissolved Ozone on the Corrosion Behavior of Cu-30Ni and Type 304L Stainless Steel in 0.5 N NaCl Solutions. Corrosion1990, 46 (10), 843-852.10.5006/1.3585043
- 9. Viera, M., et al., Comparative study of the effect of oxygen and oxygen/ozone mixtures on the electrochemical behaviour of different metals. Journal of Applied Electrochemistry2001, 31 (5), 591-598.
- 10. Ratnayaka, D. D., et al., 11.22 Production of Ozone. In Twort’s Water Supply (6th Edition), Elsevier.
- 11. Lee, W., et al., Corrosion problems caused by bromine formation in additive dosed MSF desalination plants. Desalination1983, 44 (1-3), 209-221.10.1016/0011-9164(83)87120-3
- 12. Weil, I.; Morris, J. C., Kinetic studies on the chloramines. I. The rates of formation of monochloramine, N-chlormethylamine and N-chlordimethylamine. Journal of the American Chemical Society1949, 71 (5), 1664-1671.10.1021/ja01173a033
- 13. Vikesland, P. J., et al., Effect of natural organic matter on monochloramine decomposition: pathway elucidation through the use of mass and redox balances. Environmental Science and Technology1998, 32 (10), 1409-1416.10.1021/es970589a
- 14. Prošek, T., et al., Low-temperature stress corrosion cracking of stainless steels in the atmosphere in the presence of chloride deposits. Corrosion2009, 65 (2), 105-117.10.5006/1.3319115
- 15. Prošek, T., et al., Low-temperature stress corrosion cracking of austenitic and duplex stainless steels under chloride deposits. Corrosion2014, 70 (10), 1052-1063.10.5006/1242
- 16. Bystrianský, J., et al., Influence of surface state of high alloyed creep resistant steels on their oxidation resistance. Koroze a ochrana materiálů2014, 58 (1), 19-30.10.2478/kom-2014-0003
- 17. Bystrianský, J., et al., Causes of reduced corrosion resistance of stainless steels and alloys. Koroze a ochrana materiálů2000, 44, 2-6.
- 18. Guzanová, A., et al., Determination corrosion rate of welded joints realised by MAG technology. Koroze a ochrana materiálů2017, 61 (1), 19-24.10.1515/kom-2017-0002
- 19. Outokumpu Welding Handbook. 1 ed.; Outokumpu Stainless Steel Oy: 2010.
- 20. Váňa, P., et al., Vliv redukční taveniny na moření korozivzdorných ocelí. Koroze a ochrana materiálů2011, 55 (3), 114-120.
- 21. Rudasová, P., Moření a pasivace nádrže mazacího oleje turbogenerátoru. Koroze a ochrana materiálů2010, 54 (4), 192-195.
