Have a personal or library account? Click to login
Open Access
|Jul 2025

References

  1. Alicki, R., Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries (2013-04-25). Physical Review E. 87 (4): 042123.
  2. Del Rio, L., Aberg, J., Renner, R., Dahlsten, O., and Vedral, V. The thermodynamic meaning of negative entropy. Nature 474, 61–63. 2011
  3. Hepp, K.; Lieb, E. On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model. 1973. Annals of Physics. 76(2):360404.
  4. Dicke, R. H. Coherence in Spontaneous Radiation Processes (1954). Physical Review. 93 (1): 99–110.
  5. Garraway, B.M. The Dicke model in quantum optics: Dicke model revisited (2011). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 369 (1939): 1137–1155.
  6. Kirton, P., Roses, Mor M., Keeling, J., Dalla Torre, E.G. Introduction to the Dicke Model: From Equilibrium to Nonequilibrium, and Vice Versa. Advanced Quantum Technologies (2018). 2 (1–2): 1800043.
  7. De Aguiar, M.A.M., Furuya, K, Lewenkopf, C.H, Nemes, M.C. Chaos in a spin-boson system: Classical analysis (1992). Annals of Physics. 216 (2): 291-312.
  8. Bastarrachea-Magnani, M.A., López-del-Carpio, B., Lerma-Hernández, S.; Hirsch, J.G. Chaos in the Dicke model: quantum and semiclassical analysis (2015). Physica Scripta. 90 (6): 068015.
  9. Emary, C., Brandes, T. Quantum Chaos Triggered by Precursors of a Quantum Phase Transition: The Dicke Model (2003). Physical Review Letters. 90 (4): 044101.
  10. Chávez-Carlos, J. et al. (2016). Classical chaos in atom-field systems. Physical Review E. 94 (2): 022209.
  11. Pilatowsky-Cameo, S., Chávez-Carlos, J.; Bastarrachea-Magnani, M.A., Stránský, P., Lerma-Hernández, S., Santos, L.F., Hirsch, J.G. (2020). Positive quantum Lyapunov exponents in experimental systems with a regular classical limit. Physical Review E. 101 (1): 010202.
  12. Lerma-Hernández, Set al. (2019). Dynamical signatures of quantum chaos and relaxation time scales in a spin-boson system. Physical Review E. 100 (1): 012218.
  13. Pilatowsky-Cameo, S., Villaseñor, D., Bastarrachea-Magnani, M.A., Lerma, S., Santos, L.F; Hirsch, J.G. (2021). Quantum scarring in a spin-boson system: fundamental families of periodic orbits. New Journal of Physics. 23 (3): 033045.
  14. Dimer, F., Estienne, B., Parkins, A.S., Carmichael, H.J. (2007). Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system. Physical Review A. 75 (1): 013804.
  15. Nagy, D., Kónya, G., Szirmai, G., Domokos, P. (2010). Dicke-Model Phase Transition in the Quantum Motion of a Bose-Einstein Condensate in an Optical Cavity. Physical Review Letters. 104 (13): 130401.
  16. Zhiqiang, Z. et al. (2018). Dicke-model simulation via cavity-assisted Raman transitions. Physical Review A. 97 (4): 043858.
  17. Rossini, D., Andolina, G.M., Rosa, D., Carrega, M., Polini, M. (2020-12-02). Quantum Advantage in the Charging Process of Sachdev-Ye-Kitaev Batteries. Physical Review Letters. 125 (23): 236402.
  18. Juli‘a-Farre, S.; Salamon, T., Riera, A., Bera, M.N., Lewenstein, M. Bounds on the capacity and power of quantum batteries (2020). Physical Review Research 2, 023113.
  19. Sachdev, S.; Ye, J. (1993-05-24). Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Physical Review Letters. 70 (21): 3339–3342.
  20. Kitaev, A. Talks at KITP. University of California, Santa Barbara (USA) 2015. Entanglement in Strongly Correlated Quantum Matter.
  21. Chew, A., Essin, A., Alicea, J. (2017-09-29). Approximating the Sachdev-Ye-Kitaev model with Majorana wires. Physical Review. B. 96 (12): 121119.
  22. Chen, A., Ilan, R., Juan, F., Pikulin, D.I., Franz, M. (2018-06-18). Quantum Holography in a Graphene Flake with an Irregular Boundary. Physical Review Letters. 121 (3): 036403.
  23. Wei, C., Sedrakyan, T. (2021-01-29). Optical lattice platform for the Sachdev-Ye-Kitaev model. Physical Review A. 103 (1): 013323.
  24. García-Álvarez, L. et al. (2017). Digital Quantum Simulation of Minimal AdS/CFT. Physical Review Letters. 119 (4): 040501.
  25. Luo, Z. al. (2019). Quantum simulation of the non-fermi-liquid state of Sachdev-Ye-Kitaev model. npj Quantum Information. 5: 53.
  26. Gyhm, J.-Y.; Šafránek, D., Rosa, D. Quantum Charging Advantage Cannot Be Extensive Without Global Operations. Physical Review Letters. 2022-04-08. 128, 140501.
  27. Oppenheim, J., Horodecki, M. Thermodynamic Approach to Quantifying Quantum Correlations. Physical Review Letters. (2002-11-11). 89, 180402.
  28. Andolina, G. et al. Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. Physical Review Letters. (2019-02-01). 122, 47702.
  29. Monsel, J., Fellous-Asiani, M., Huard, B., Auffeves, A. The Energetic Cost of Work Extraction. Physical Review Letters. (2020-03-30). 124, 130601.
  30. Maffei, M., Camati, P. A., Auffeves, A. Probing nonclassical light fields with energetic witnesses in waveguide quantum electrodynamics. Physical Review Research. (2021-09-24). 3, L032073.
  31. Caravelli, F., Yan, B., García-Pintos, L.P., Hamma, A. Energy storage and coherence in closed and open quantum batteries. Quantum. (2021-07-15). volume 5, 505.
  32. Hu et al. Optimal charging of a superconducting quantum battery. Quantum Sci. Technol. 7 (2022) 045018.
  33. Imai et al. Work fluctuations and entanglement in quantum batteries. Physical Review. A 107 (2023) 2, 022215.
  34. F. Q. Dou, Y. J. Wang, and J. A. Sun. Closed-loop three-level charged quantum battery. EPL 131, 43001 (2020).
  35. F.-Q. Dou, Y.-J. Wang, and J.-A. Sun. Charging advantages of Lipkin-Meshkov-Glick quantum battery. arXiv:2208.04831 (2022d).
  36. Wang, Y., Wu, H., and Zhao, Q. Metastability-Induced Solid-State Quantum Batteries for Powering Microwave Quantum Electronics. Quantum Physics. (29 Oct 2024). arXiv:2410.21900.
  37. Metzler, F., Sandoval, J., Galvanetto, N. Quantum Engineering for Energy Applications. Engineering, Physics, Environmental Science. March, 2, 2023. https://doi.org/10.48550/arXiv.2303.01632.
  38. Le T. P., Levinsen J., Modi K., Parish M., Pollock F., Spin-chain model of a many-body quantum battery. (2018). Physical Review A 97, 022106.
  39. Rosa, D. et al. Ultra-stable charging of fast-scrambling SYK quantum batteries. Journal of High Energy Physics. 2020, 67 (2020).
  40. Campaioli, F. et al. Colloquium: Quantum Batteries. (2023). DOI: 10.48550/arXiv. 2308.02277.
  41. Yang, X. et al. Benzo-cyclohepta-fluorene: an isomeric motif for pentacene containing linearly fused five-, six- and seven-membered rings. DOI: 10.1039/C6SC01795A Chemical Science. 2016, 7, 6176-6181.
Language: English
Page range: 69 - 76
Published on: Jul 5, 2025
Published by: Nicolae Balcescu Land Forces Academy
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Yordan Katsarov, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.