Have a personal or library account? Click to login
Beyond the Mirror: Digital Twin Cybersecurity for National Resilience Cover

Beyond the Mirror: Digital Twin Cybersecurity for National Resilience

Open Access
|Jul 2025

References

  1. Batty, M. (2018). Digital twins. Environment and Planning B: Urban Analytics and City Science, 45(5), 817-820.
  2. Juarez, M. G., Botti, V. J., & Giret, A. S. (2021). Digital twins: Review and challenges. Journal of Computing and Information Science in Engineering, 21(3), 030802.
  3. Dawson, M. (2018). Cyber security in industry 4.0: The pitfalls of having hyperconnected systems. Journal of Strategic Management Studies, 10(1), 19-28.
  4. CISA (n.d.). Critical manufacturing sector Retrieved from https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors/critical-manufacturing-sectore Security Agency CISA
  5. Ferko, M., et al. (2023). Standardisation in Digital Twin Architectures in Manufacturing. IEEE 20th International Conference on Software Architecture (ICSA), L’Aquila, Italy, 70-81. https://doi.org/10.1109/ICSA56044.2023.00015
  6. Miller, D. C. Rowe, A survey scada of and critical infrastructure incidents., RIIT 12 (2012) 51–56.
  7. Cárdenas, A. A., Amin, S., Lin, Z. S., Huang, Y. L., Huang, C. Y., & Sastry, S. (2011, March). Attacks against process control systems: risk assessment, detection, and response. In Proceedings of the 6th ACM symposium on information, computer and communications security (pp. 355–366). ACM.
  8. Chahid, Y., Benabdellah, M., & Azizi, A. (2017, April). Internet of things security. In 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS) (pp. 1–6). IEEE.
  9. Creery, A., & Byres, E. J. (2005, September). Industrial cybersecurity for power system and SCADA networks. In Petroleum and Chemical Industry Conference, 2005. Industry Applications Society 52nd Annual (pp. 303–309). IEEE.
  10. Aljawarneh, S. A., Alawneh, A., & Jaradat, R. (2017). Cloud security engineering: Early stages of SDLC. Future Generation Computer Systems, 74, 385–392.
  11. Ani, U. P. D., He, H., & Tiwari, A. (2017). Review of cybersecurity issues in industrial critical infrastructure: manufacturing in perspective. Journal of Cyber Security Technology, 1(1), 32-74.
  12. Shao, G. (2023, September). Manufacturing Digital Twin Standards. In Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems (pp.370-377)
  13. Attaran, M., & Celik, B. G. (2023). Digital Twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal, 6, 100165. https://doi.org/10.1016/j.dajour.2023.100165
  14. Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Journal of Industrial Information Integration, 30, 100383. https://doi.org/10.1016/j.jii.2022.100383
  15. Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., & Calinescu, A. (2022). Digital Twinds: State of the art theory and practice, challenges, and open research questions. Journal of Industrial Information Integration, 30, 100383. https://doi.org/10.1016/j.jii.2022.100383
  16. Shao, G. (2021). Use Case Scenarios for Digital Twin Implementation Based on ISO 23247. Advanced Manufacturing Series (NIST AMS), National Institute of Standards and Technology. https://doi.org/10.6028/NIST.AMS.400-2
  17. Attaran, M., & Celik, B. G. (2023). Digital Twin: Benefits, use cases, challenges, and opportunities. Decision Analytics Journal, 6, 100165. https://doi.org/10.1016/j.dajour.2023.100165
  18. Shao, G., & Helu, M. (2023a). Framework for A Digital Twin in Manufacturing: Scope and Requirements. Manufacturing Letters, 24, 105-107.
  19. Shao, G. (2023b, September). Manufacturing Digital Twin Standards. In Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems (pp.370-377).
  20. International Organization for Standardization. (2021). ISO 23247-1: Automation systems and integration — Digital twin framework for manufacturing — Part 1: Overview and general principles.
  21. International Organization for Standardization. (2021). ISO/IEC 30173: Digital twin, Concepts and terminology.
  22. International Organization for Standardization. (2023). ISO/IEC TR 30172: Internet of Things (IoT). Digital twin. Use cases. https://www.iso.org/standard/81578.html
  23. International Electrotechnical Commission. (2023). IEC 63278-1:2023 ED1 Asset Administration Shell for industrial applications - Part 1: Asset Administration Shell structure. https://www.iec.ch/dyn/www/f?p=103:38:25763300038578::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_PROJECT_ID:1250,23,103536
  24. Institute of Electrical and Electronics Engineers. (2019). IEEE-P2806 System architecture of digital representation for physical objects in factory environments. https://standards.ieee.org/project/2806.html
  25. MTConnect Institute. (2022). MTConnect standardizes factory device data. https://www.mtconnect.org/
  26. OPC Foundation. (2023). OPC-UA services specification. https://opcfoundation.org/developer-tools/specifications-unified-architecture
  27. International Organization for Standardization (2021). ISO 10303: Industrial automation systems and integration - product data representation and exchange - Part 1: Overview and fundamental principles. https://www.iso.org/standard/72237.html
  28. International Organization for Standardization (2020). ISO 23952: Automation Systems and Integration – Quality Information Framework (QIF) - An Integrated Model for Manufacturing Quality Information. https://www.iso.org/standard/77461.html
  29. Lin, S., Kym Watson, K., Shao, G., Stojanovic, L. & Zarkout, B. (2023). Digital twin core conceptual models and services. Industry IoT Consortium. Retrieved https://www.iiconsortium.org/wp-content/uploads/sites/2/2023/10/Digital-Twin-Core-Conceptual-Models-and-Services_20231102.pdf
  30. Boss, B., Malakuti, S., Lin, S.-W., Usländer, T., Clauer, E., Hoffmeister, M., & Stojanovic, L. (2020). Digital Twin and Asset Administration Shell Concepts and Application in the Industrial Internet and Industrie 4.0, an Industrial Internet Consortium and Plattform Industrie 4.0 Joint White paper. https://www.iiconsortium.org/pdf/Digital-Twin-and-Asset-Administration-Shell-Concepts-and-Application-Joint-Whitepaper.pdf
  31. Wallner, B., Zwölfer, B., Trautner, T., & Bleicher, F. (2023). Digital Twin Development and Operation of a Flexible Manufacturing Cell using ISO 23247. Procedia CIRP, 120, 1149–1154. https://doi.org/10.1016/j.procir.2023.09.140
  32. National Academies of Sciences, Engineering, and Medicine. (2023). Foundational Research Gaps and Future Directions for Digital Twins. National Academies Press. http://nap.nationalacademies.org/26894
  33. Fischer, O. P., Matlik, J., Schindel, W., French, M., Kabir, M., Ganguli, J., Hardwick, M., Arnold, S., Byar, A., Lewe, J.-H., Mahadevan, S., Duncan, S., Dong, J., Kinard, D., & Maiaru, M. (2022). Digital Twin: Reference Model, Realizations, and Recommendations. https://doi.org/10.1002/inst.12373
  34. Denning, D. E. (2012). Stuxnet: What has changed? Future Internet, 4(3), 672–687. https://doi.org/10.3390/fi4030672
  35. Munro, K. (2012). Deconstructing Flame: The limitations of traditional defences. Computer Fraud & Security, 2012(10), 8–11. https://doi.org/10.1016/S1361-3723(12)70103-4
  36. Bhattacharjee, S., Salimitari, M., Chatterjee, M., Kwiat, K., & Kamhoua, C. (2017, November). Preserving data integrity in IoT networks under opportunistic data manipulation. In 2017 IEEE DASC/PiCom/DataCom/CyberSciTech (pp. 446–453). https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.86
  37. Copos, B., Levitt, K., Bishop, M., & Rowe, J. (2016, May). Is anybody home? Inferring activity from smart home network traffic. IEEE Security and Privacy Workshops, 245–251. https://doi.org/10.1109/SPW.2016.44
  38. Robles, R. J., Choi, M. K., Cho, E. S., Kim, S. S., Park, G., & Lee, J. (2008). Common threats and vulnerabilities of critical infrastructures. International Journal of Control and Automation, 1(1), 17–22.
  39. Lewis, J. A. (2002). Assessing the risks of cyber terrorism, cyber war and other cyber threats. Washington, DC: Center for Strategic & International Studies.
  40. Lichtman, M., Rao, R., Marojevic, V., Reed, J., & Jover, R. P. (2018, May). 5G NR jamming, spoofing, and sniffing: Threat assessment and mitigation. In 2018 IEEE ICC Workshops, 1–6. https://doi.org/10.1109/ICCW.2018.8403660
  41. Ge, X., Ye, J., Yang, Y., & Li, Q. (2016). User mobility evaluation for 5G small cell networks based on individual mobility model. IEEE Journal on Selected Areas in Communications, 34(3), 528–541. https://doi.org/10.1109/JSAC.2016.2525639
  42. Wilson, C. (2014). Cyber Threats to Critical Information Infrastructure. In Cyberterrorism (pp. 123–136)
  43. Dawson, M (2018). Cybersecurity in Industry 4.0: The pitfalls of having hyperconnected systems. Journal of Strategic Management Studies, 10(1), 19–28.
  44. Dawson, M., Bacius, R., Gouveia, L. B., & Vassilakos, A. (2021). Understanding the Challenge of Cybersecurity in Critical Infrastructure Sectors. Land Forces Academy Review, Vol. XXVI, No. 1(101), 69–75. https://doi.org/10.2478/raft-2021-0011
  45. Gaia, J., Sanders, G.L., Sanders, S.P. Upadhyaya, S., Wang, X., & Yoo, C.W. (2021). Dark traits and hacking potential. Journal of Organizational Psychology, 21(3), 23-46.
Language: English
Page range: 87 - 95
Published on: Jul 5, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2025 Maurice Dawson, Andreas Vassilakos, Sandra Moore, Annamaria Szakonyi, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.