Have a personal or library account? Click to login
Study on the Evolution, Results and Trends of Applying Stochastic Optimization Cover

Study on the Evolution, Results and Trends of Applying Stochastic Optimization

Open Access
|Jul 2019

References

  1. [1] Beale, E.M.L., On Minimizing a Convex Function Subject to Linear Inequalities, Journal of the Royal Statistical Society. Series B, vol 17 (2), pp.173-184, 1955.10.1111/j.2517-6161.1955.tb00191.x
  2. [2] Bereanu, B., On Stochastic Linear Programming. Distributions Problems, Stochastic Technology Matrix, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 8, pp.148-152, 1967.10.1007/BF00536917
  3. [3] Bereanu, B., The Continuity of the Optimumin Parametric Programming and Applications to Stochastic Programming, J. of Opt. Theory and its Applications 18, pp.319-333, 1976.10.1007/BF00933815
  4. [4] Bereanu, B., The Distribution Problem in Stochastic Linear Programming. The Cartesian Integration Method, Reprint No. 7103, Center of Mathematical Statistics of the Academy of the Socialist Republic of Romania, Bucharest, pp.71-103, 1971.
  5. [5] Bereanu, B., Some Numerical Methods in Stochastic Linear Programming under Risk and Uncertainty, Stoch. Programming (M.A.H. Dempster, ed), Academic Press, London, pp.196-205, 1980.
  6. [6] Charnes, A., Cooper, W.W. și Symonds, G.H. Cost Horizons and Certainty Equivalents: an Approach to Stochastic Programming of Heating Oil, Management Sci., 4, pp.235-263, 195810.1287/mnsc.4.3.235
  7. [7] Charnes, A., Cooper, W.W., Deterministic Equivalents for Optimizating and Satisfying under Chance Constraint., Operation Research 11(1), pp.18-39, 1963.10.1287/opre.11.1.18
  8. [8] Dantzig, G.B., Linear Programming under Uncertainty, Management Sci., 1, pp.197-206, 1955.10.1287/mnsc.1.3-4.197
  9. [9] Dantzig, G.B. and Wolfe,P., The DescompositionAlgorithm for Linear Programs, Econometrica, vol.29, pp.767-778, 1961.10.2307/1911818
  10. [10] Ewbank, J.B., Foote, B.L., Kumin. H.J., A Method for the Solution of the Distribution Problem of Stochastic Linear Programming, SIAM J. Appl. Math., 26, pp.237-243, 1974.10.1137/0126020
  11. [11] Lageweg, B.J., Lenstra, J.K.,Rinnoy Kan, A.H.G.R., Stougie, L., Stochastic Integer Programming by Dynamic Programming, StatisticaNeerlandica, 39 (2), 97-113, 1985.10.1111/j.1467-9574.1985.tb01131.x
  12. [12] Lemke, C.E., The Dual Method for Solving the Linear Programming Problem, Naval Research Logistic Quarterly 1, pp.36-47, 1954.10.1002/nav.3800010107
  13. [13] Prékopa, A., Stochastic Programming, AkadémiaKiadó, Budapest, 1995.10.1007/978-94-017-3087-7
  14. [14] Prékopa, A., Dual Method for a One-stage Stochastic Programming Problem with Random RHS Obeying a Discrete Probability Distribution, Zeitschrift fur Op.Research, 38, pp.441-461, 1990.10.1007/BF01421551
  15. [15] Sen, S. and Liu, Y., Mitigating Uncertainty via Compromise Decision in Two-stage Stochastic Linear Programming,Operations Research 64 (6), 1422-1437, 2014.10.1287/opre.2016.1526
  16. [16] Slyke, R,. van, Wets, R.J.-B., L-shaped Linear Program with Applica.tion to Optimal Control and Stochastic Linear Programs, SIAM J. on Applied Math. 17, pp.638-663, 196910.1137/0117061
  17. [17] Stancu-Minasian, I.M., Programareastochastică cu mail multefuncțiiobiectiv, Ed. AcademieiRSR, 1980.
  18. [18] Stougie, L., Design and Analysis of Algorithms for Stochastic Integer Programming, CWI Tract 37, Centrum voorWiskundeen Informatica, Amsterdam, 1987.
  19. [19] Strazicky, B., Computational Experience with Algorithm for Discrete Recourse Problems, Stochastic Programming (M.A.H. Dempster, ed.) Academis Press, London, pp.263-274, 1980.
  20. [20] Tintner, G., Stochastic Linear Programming with Applications to Agricultural Economicsz, Proseedings of the Second Symposium in Linear Programming, H.A. Antotosiewicz (ed.) National Bureau Standard, Washington, pp. 197-228, 1955.
  21. [21] Wets, R.J.-B., Programming under uncertainty: the complete problem, Z. WahrscheinlichkeitstheorieVerw, Gebiete, 4, pp.316-339, 1966.10.1007/BF00539117
  22. [22] Wets, R.J.-B., Solving stochastic programs with simple recourse, Stochastics 10, pp.219-242, 1983.10.1080/17442508308833274
  23. [23] Wollmer, R.M., Two-stage linear programming under uncertainty with 0-1 first stage variables, Mathematical programming 19, pp.279-288, 1980. https://www.aimms.com. https://www.solver.com/xpress-solver-engine10.1007/BF01581648
Language: English
Page range: 25 - 30
Published on: Jul 23, 2019
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2019 Alexandru Hampu, Vasile Căruţaşu, published by Nicolae Balcescu Land Forces Academy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.