Have a personal or library account? Click to login
Antibacterial activity and genomic characterisation of a novel Brevibacillus laterosporus XJ-24-3 isolated from Xinjiang, China Cover

Antibacterial activity and genomic characterisation of a novel Brevibacillus laterosporus XJ-24-3 isolated from Xinjiang, China

Open Access
|Sep 2025

Figures & Tables

Fig. 1.

Isolation and identification of Brevibacillus laterosporus. (A) Gram staining of five strains of lateral spore-forming bacteria; (B) Antibacterial activity of the sterile supernatants of the culture fluids of five suspected strains; (C) 1% gel electrophoresis of the 16S rRNA of the isolates; M – DNAmarker; N – negative control; (D) Phylogenetic tree constructed based on partial sequences of the 16S rRNA gene. Red circles mark the positions of strains XJ-24-1, XJ-24-2, XJ-24-3, XJ-24-4 and XJ-24-5 isolated in this experiment
Isolation and identification of Brevibacillus laterosporus. (A) Gram staining of five strains of lateral spore-forming bacteria; (B) Antibacterial activity of the sterile supernatants of the culture fluids of five suspected strains; (C) 1% gel electrophoresis of the 16S rRNA of the isolates; M – DNAmarker; N – negative control; (D) Phylogenetic tree constructed based on partial sequences of the 16S rRNA gene. Red circles mark the positions of strains XJ-24-1, XJ-24-2, XJ-24-3, XJ-24-4 and XJ-24-5 isolated in this experiment

Fig. 2.

Determination of antibacterial activity of the Brevibacillus laterosporus XJ-24-3 isolate. (A) Bacteriostatic activity of bacteria-free supernatant and B. laterosporus XJ-24-3 against methicillin-resistant Staphylococcus aureus (MRSA), S. aureus, Listeria monocytogenes, Bacillus cereus, E. coli and Klebsiella pneumoniae; (B) The observation of MRSA treated by cultural supernatant of B. laterosporus XJ-24-3 using a scanning electron microscope; b1 – untreated MRSA; b2 and b3 – MRSA treated by the supernatant of B. laterosporus XJ-24-3 for 1 h and 2 h, respectively
Determination of antibacterial activity of the Brevibacillus laterosporus XJ-24-3 isolate. (A) Bacteriostatic activity of bacteria-free supernatant and B. laterosporus XJ-24-3 against methicillin-resistant Staphylococcus aureus (MRSA), S. aureus, Listeria monocytogenes, Bacillus cereus, E. coli and Klebsiella pneumoniae; (B) The observation of MRSA treated by cultural supernatant of B. laterosporus XJ-24-3 using a scanning electron microscope; b1 – untreated MRSA; b2 and b3 – MRSA treated by the supernatant of B. laterosporus XJ-24-3 for 1 h and 2 h, respectively

Fig. 3.

Genome map of the Brevibacillus laterosporus XJ-24-3 isolate. Kbp – kilobase pairs; rRNA – ribosomal RNA; tRNA – transfer RNA; sRNA – small RNA; CRISPR – clustered regularly interspaced short palindromic repeats; GC – guanine and cytosine; C G – Cluster of rthologous Groups
Genome map of the Brevibacillus laterosporus XJ-24-3 isolate. Kbp – kilobase pairs; rRNA – ribosomal RNA; tRNA – transfer RNA; sRNA – small RNA; CRISPR – clustered regularly interspaced short palindromic repeats; GC – guanine and cytosine; C G – Cluster of rthologous Groups

Fig. 4A and B.

Functional annotation of the genome of the Brevibacillus laterosporus XJ-24-3 isolate. (A) GO annotation; (B) KEGG analysis annotation
Functional annotation of the genome of the Brevibacillus laterosporus XJ-24-3 isolate. (A) GO annotation; (B) KEGG analysis annotation

Fig. 4C, D and E.

Statistical analysis of secondary metabolic gene clusters in the genome of the Brevibacillus laterosporus XJ-24-3 isolate. (C) Carbohydrate-Active Enzyme (CAZy) function prediction; (D) Cluster of Orthologous Groups (COG) analysis; (E) Transporter Classification Database (TCDB) annotation
Statistical analysis of secondary metabolic gene clusters in the genome of the Brevibacillus laterosporus XJ-24-3 isolate. (C) Carbohydrate-Active Enzyme (CAZy) function prediction; (D) Cluster of Orthologous Groups (COG) analysis; (E) Transporter Classification Database (TCDB) annotation

Fig. 5.

uantities of secondary metabolic gene clusters in the genome of the Brevibacillus laterosporus XJ-24-3 isolate
uantities of secondary metabolic gene clusters in the genome of the Brevibacillus laterosporus XJ-24-3 isolate

Fig. 6.

Prediction of bacteriocin-related genes in seven regions (A–G) of the genome of Brevibacillus laterosporus XJ-24-3 strain. (A) Lantibiotic ATP-binding cassette (ABC) transporter (ATP – adenosine triphosphate) in red and 131.2 gene (encoding laterosporulin bacteriocin) in green; (B) 223.2 (uviB) gene in green; (C) 224.2 (uviB) gene in green; (D) Lantibiotic ABC transporter (encoding putative YheS) in red and bmbF gene (encoding ribosomal RNA large subunit methyltransferase Cfr) in blue; ( ) Lantibiotic HlyD transporter (encoding efflux resistance-nodulation-division transporter permease subunit) in red and bmbF gene (encoding radical s-adenosylmethionine domain protein) in blue; (F) Lantibiotic ABC transporter in red and 11.1 (bsaA2) gene in green; lanB, lanC and lanD genes (encoding lantibiotic biosynthesis proteins) in blue; (G) lapBotD genes (encoding lantibiotic biosynthesis proteins) in blue and lantibiotic ABC transporter in red
Prediction of bacteriocin-related genes in seven regions (A–G) of the genome of Brevibacillus laterosporus XJ-24-3 strain. (A) Lantibiotic ATP-binding cassette (ABC) transporter (ATP – adenosine triphosphate) in red and 131.2 gene (encoding laterosporulin bacteriocin) in green; (B) 223.2 (uviB) gene in green; (C) 224.2 (uviB) gene in green; (D) Lantibiotic ABC transporter (encoding putative YheS) in red and bmbF gene (encoding ribosomal RNA large subunit methyltransferase Cfr) in blue; ( ) Lantibiotic HlyD transporter (encoding efflux resistance-nodulation-division transporter permease subunit) in red and bmbF gene (encoding radical s-adenosylmethionine domain protein) in blue; (F) Lantibiotic ABC transporter in red and 11.1 (bsaA2) gene in green; lanB, lanC and lanD genes (encoding lantibiotic biosynthesis proteins) in blue; (G) lapBotD genes (encoding lantibiotic biosynthesis proteins) in blue and lantibiotic ABC transporter in red

Prediction of molecular sequences with antimicrobial activity in the Brevibacillus laterosporus XJ-24-3 isolate

Antimicrobial moleculeDetected byAmino acid sequence
LaterosporulinBAGEL4MACVNECPDAVDDWAYGDWKCHPVEGKYYRHVFAVCMNGANLYCKTEWSKGC
223.2 (UviB)BAGEL4MEESVMNALLQQGPFAALFVWLLFSTKKEGRDRETRLVKQAQAREAKLMEHNERMVIQLERNTSTLQQIERSLSGLEMELQELKEKVE
224.2 (UviB)BAGEL4MGSFGSLLYLPQGGDKERKSMEEPLFNALLSQGPFAGLFVWLLFSTKKEGRDRETRLVEQAQQREAKLMEHSERMVIQLERNTTTLQQIERSLNGLENELEELKE KVG
Linear azol(in)e-containing peptideBAGEL4MDDFQNELKKLRVDKFQGGDVSPWENESQQDAMLVQRRCGRCHHCSCSCSCSCSCSCSCSCSCSCVCLFINCFRCSRCSRCF
SactipeptideBAGEL4MKNYTTPKVKVVNPGVIDVIDSCQCGSKNGAGA
Class I lanthipeptideBAGEL4MKKEDLFDLDVQVKEASQAQGDSVVSDLICTTFCSATFCQSNCC
BottromycinBAGEL4MGPVVVFDCMTADFLNDDPNNAELSALELEELESWGVWSEDNQSV
BM1122antiSMASHMNKTELIAKVAETSELTKKDATKAVDAVLDAISDALKEGDKVQLIGFGNFEVRERAARKGRNPQTGEEIEIASSKIPAFKPGKQLKDSIK
Lactococcin 972-likeantiSMASHMDKSQKFPDSPLSKEEWRQLDETIVEMARRQLVGRRFIDIYGPLGEGIQTITN DIYDESRFGNMSLRGESLELTQPSKRVSLTIPIVYKDFMLYWRDMAQARTLG MPIDLSPAANAASSCALMEDDLIFNGNPEFDLPGIMNVKGRLTHIKSDWMES GNAFADIVEARNKLLKMGHSGPYALVVSPELYSLLHRVHKGTNVLEIDHIRN LVTDGVFQSPVIKGGALVATGRHNLDLAIAEDFDSAFLGDEQMNSLMRVYEC AVLRIKRPSAICTLETTEE
HolinantiSMASHMKVLFLLHKMRQGGKNGMEESVMNALLQQGPFAALFVWLLFSTKKEGRDR ETRLVKQAQAREAKLMEHNERMVIQLERNTSTLQQIERSLSGLEMELQELKE KVE
Language: English
Page range: 313 - 324
Submitted on: Jan 10, 2025
Accepted on: Sep 12, 2025
Published on: Sep 17, 2025
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Ming Wu, Shuang Chen, Guofei Li, Huimei Zhang, Fushuang Duan, Yufei Zuo, Xuepeng Cai, Jie Li, Qingling Meng, Jun Qiao, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution 4.0 License.