Have a personal or library account? Click to login
Cytokine inflammatory response in dairy cows with mastitis caused by Streptococcus agalactiae Cover

References

  1. Bannerman D.D., Paape M.J., Goff J.P., Kimura K., Lippolis J.D., Hope J.C.: Innate immune response to intramammary infection with Serratia marcescens and Streptococcus uberis. Vet Res 2004, 35, 681–700, doi: <a href="https://doi.org/10.1051/vetres:2004040." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/vetres:2004040.</a>
  2. Bannerman D.D., Paape M.J., Lee J.W., Zhao X., Hope J.C., Rainard P.: Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin Diagn Lab Immunol 2004, 11, 463–472, doi: <a href="https://doi.org/10.1128/CDLI.11.3.463-472.2004." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/CDLI.11.3.463-472.2004.</a>
  3. Bochniarz M., Błaszczyk P., Szczubiał M., Vasiu I., Adaszek Ł., Michalak K., Pietras-Ożga D., Wochnik M., Dąbrowski R.: Comparative analysis of total protein, casein, lactose, and fat content in milk of cows suffering from subclinical and clinical mastitis caused by Streptococcus spp. J Vet Res 2023, 67, 251–257, doi: <a href="https://doi.org/10.2478/jvetres-2023-0028." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2478/jvetres-2023-0028.</a>
  4. Bochniarz M., Szczubiał M., Brodzki P., Krakowski L., Dąbrowski R.: Serum amyloid A as an marker of cow’s mastitis caused by Streptococcus sp. Comp Immunol Microbiol Infect Dis 2020, 72, 101498, doi: <a href="https://doi.org/10.1016/j.cimid.2020.101498." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cimid.2020.101498.</a>
  5. Boudjellab N., Chan-Tang H.S., Zhao X.: Bovine interleukin-1 expression by cultured mammary epithelial cells (MAC-T) and its involvement in the release of MAC-T derived interleukin-8. Comp Biochem Physiol 2000, 127, 191–199, doi: <a href="https://doi.org/10.1016/s1095-6433(00)00257-9." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/s1095-6433(00)00257-9.</a>
  6. Boulanger D., Bureau F., Mélotte D., Mainil J., Lekeux P.: Increased nuclear factor κb activity in milk cells of mastitis-affected cows. J Dairy Sci 2003, 86, 1259–1267, doi: <a href="https://doi.org/10.3168/jds.S0022-0302(03)73710-2." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.S0022-0302(03)73710-2.</a>
  7. Compton C.W., Heuer C., Parker K., McDougall S.: Epidemiology of mastitis in pasture-grazed peripartum dairy heifers and its effects on productivity. J Dairy Sci 2007, 90, 4157–4170, doi: <a href="https://doi.org/10.3168/jds.2006-880." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.2006-880.</a>
  8. Eckersall P.D., Young F.J., McComb C., Hogarth C.J., Safi S., Weber A., McDonald T., Nolan A.M., Fitzpatrick J.L.: Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Vet Rec 2001, 148, 35–41, doi: <a href="https://doi.org/10.1136/vr.148.2.35." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1136/vr.148.2.35.</a>
  9. Fitzgerald D.C., Meade K.G., McEvoy A.N., Lillis L., Murphy E.P., MacHugh D.E., Baird A.W.: Tumour necrosis factor-α (TNF-α) increases nuclear factor κB (NFκB) activity in and interleukin-8 (IL-8) release from bovine mammary epithelial cells. Vet Immunol Immunopathol 2007, 116, 59–68, doi: <a href="https://doi.org/10.1016/j.vetimm.2006.12.008." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetimm.2006.12.008.</a>
  10. Gonçalves J.L., Lyman R.L., Hockett M., Rodriguez R., Dos Santos M.V., Anderson K.L.: Using Milk Leukocyte Differentials for Diagnosis of Subclinical Bovine Mastitis. J Dairy Res 2017, 84, 309–317, doi: <a href="https://doi.org/10.1017/S0022029917000267." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1017/S0022029917000267.</a>
  11. Günther J., Liu S., Esch K., Schuberth H.J., Seyfert H.M.: Stimulated expression of TNF-alpha and IL-8, but not of lingual antimicrobial peptide reflects the concentration of pathogens contacting bovine mammary epithelial cells. Vet Immunol Immunopathol 2010, 135, 152–157, doi: <a href="https://doi.org/10.1016/j.vetimm.2009.11.004." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetimm.2009.11.004.</a>
  12. Ibrahim H.M., El-seedy Y.Y., Gomaa N.A.: Cytokine response and oxidative stress status in dairy cows with acute clinical mastitis. J Dairy Vet Anim Res 2016, 3, 9–13, doi: <a href="https://doi.org/10.15406/jdvar.2016.03.00064." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.15406/jdvar.2016.03.00064.</a>
  13. Kabelitz T., Aubry E., van Vorst K., Amon T., Fulde M.: The Role of Streptococcus spp. in Bovine Mastitis. Microorganisms 2021, 9, 1497, doi: <a href="https://doi.org/10.3390/microorganisms9071497." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/microorganisms9071497.</a>
  14. Keefe G.P.: Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis, Vet Clin North Am Food Anim Pract 2012, 28, 203–216, doi: <a href="https://doi.org/10.1016/j.cvfa.2012.03.010." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.cvfa.2012.03.010.</a>
  15. Krömker V., Reinecke F., Paduch J.H., Grabowski N.: Bovine Streptococcus uberis intramammary infections and mastitis. Clin Microbiol 2014, 3, 2–7, doi: <a href="https://doi.org/10.4172/2327-5073.1000157." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4172/2327-5073.1000157.</a>
  16. Moyes K., Drackley J., Morin D., Bionaz M., Rodriguez-Zas S., Everts R., Lewin H., Loor J.: Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genomics 2009, 10, 542, doi: <a href="https://doi.org/10.1186/1471-2164-10-542." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1186/1471-2164-10-542.</a>
  17. Oviedo-Boyso J., Valdez-Alarcón J.J., Cajero-Juárez M., Ochoa-Zarzosa A., López-Meza J.E., Bravo-Patiño A., Baizabal-Aguirre V.M.: Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect 2007, 54, 399–409, doi: <a href="https://doi.org/10.1016/j.jinf.2006.06.010." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jinf.2006.06.010.</a>
  18. Paape M.J., Bannerman D.D., Zhao X., Lee J.W.: The bovine neutrophil: structure and function in blood and milk. Vet Res 2003, 34, 597–627, doi: <a href="https://doi.org/10.1051/vetres:2003024." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/vetres:2003024.</a>
  19. Piotrowska-Tomala K.K., Siemieniuch M.J., Szóstek A.Z., Korzekwa A.J., Wocławek-Potocka I., Galváo A.M., Okuda K., Skarzyński D.J.: Lipopolysaccharides, Cytokines, and Nitric Oxide Affect Secretion of Prostaglandins and Leukotrienes by Bovine Mammary Gland Epithelial Cells. Domest Anim Endocrinol 2012, 43, 278–288, doi: <a href="https://doi.org/10.1016/j.domaniend.2012.04.005." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.domaniend.2012.04.005.</a>
  20. Rainard P., Riollet C.: Mobilization of neutrophils and defense of the bovine mammary gland. Reprod Nutr Dev 2003, 43, 436–457, doi: <a href="https://doi.org/10.1051/rnd:2003031." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1051/rnd:2003031.</a>
  21. Rato M.G., Bexiga R., Florindo C., Cavaco L.M., Vilela C.L., Santos-Sanches I.: Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet Microbiol 2013, 161, 286–294, doi: <a href="https://doi.org/10.1016/j.vetmic.2012.07.043." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetmic.2012.07.043.</a>
  22. Schukken Y.H., Günther J., Fitzpatrick J., Fontaine M.C., Goetze L., Holst O., Leigh J., Petzl W., Schuberth H.J., Sipka A., Smith D.G., Quesnell R., Watts J., Yancey R., Zerbe H., Gurjar A., Zadoks R.N., Seyfert H.M.: Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 2011, 144, 270–289, doi: <a href="https://doi.org/10.1016/j.vetimm.2011.08.022." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.vetimm.2011.08.022.</a>
  23. Sellati T.J., Sahay B.: Cells of Innate Immunity: Mechanisms of Activation. In: Pathobiology of Human Disease edited by L.M. McManus, R.N. Mitchell, Academic Press, San Diego, CA, USA, 2014, pp. 258–274.
  24. Shaheen T., Bilal Ahmad S., Rehman M.U., Muzamil S., Razak Bhat R., Hussain I., Bashir N., Mir M.U., Paray B.A., Dawood M.A.: Investigations on Cytokines and Proteins in Lactating Cows with and without Naturally Occurring Mastitis. J King Saud Univ Sci 2020, 32, 2863–2867, doi: <a href="https://doi.org/10.1016/j.jksus.2020.07.009." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/j.jksus.2020.07.009.</a>
  25. Shuster D.E., Kehrli M.E., Rainard P., Paape M.: Complement fragment C5a and inflammatory cytokines in neutrophil recruitment during intramammary infection with Escherichia coli. Infect Immun 1997, 65, 3286–3292, doi: <a href="https://doi.org/10.1128/iai.65.8.3286-3292.1997." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1128/iai.65.8.3286-3292.1997.</a>
  26. Sordillo L.M., Shafer-Weaver K., DeRosa D.: Immunobiology of the Mammary Gland. J Dairy Sci 1997, 80, 1851–1865, doi: <a href="https://doi.org/10.3168/jds.S0022-0302(97)76121-6." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.S0022-0302(97)76121-6.</a>
  27. Stein B.N., Gamble J.R., Pitson S.M., Vadas M.A., Khew-Goodall Y.: Activation of endothelial extracellular signal-regulated kinase is essential for neutrophil transmigration: Potential involvement of a soluble neutrophil factor in endothelial activation. J Immunol 2003, 171, 6097–6104, doi: <a href="https://doi.org/10.4049/jimmunol.171.11.6097." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.4049/jimmunol.171.11.6097.</a>
  28. Verbeke J., Piepers S., Supre K., De Vliegher S.: Pathogen-specific incidence rate of clinical mastitis in Flemish dairy herds, severity, and association with herd hygiene. J Dairy Sci 2014, 97, 6926–6934, doi: <a href="https://doi.org/10.3168/jds.2014-8173." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.2014-8173.</a>
  29. Vitenberga-Verza Z., Pilmane M., Šerstņova K., Melderis I., Gontar Ł., Kochański M., Drutowska A., Maróti G., Prieto-Simón B.: Identification of Inflammatory and Regulatory Cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-Producing Cells in the Milk of Dairy Cows with Subclinical and Clinical Mastitis. Pathogens 2022, 11, 372, doi: <a href="https://doi.org/10.3390/pathogens11030372." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3390/pathogens11030372.</a>
  30. Watanabe A., Yagi Y., Shiono H., Yokomizo Y., Inumaru S.: Effects of intramammary infusions of interleukin-8 on milk protein composition and induction of acute-phase protein in cows during mammary involution. Can J Vet Res 2008, 72, 291–296.
  31. Wenz J.R., Fox L.K., Muller F.J., Rinaldi M., Zeng R., Bannerman D.D.: Factors Associated with Concentrations of Select Cytokine and Acute Phase Proteins in Dairy Cows with Naturally Occurring Clinical Mastitis. J Dairy Sci 2010, 93, 2458–2470, doi: <a href="https://doi.org/10.3168/jds.2009-2819." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.3168/jds.2009-2819.</a>
  32. Zhang H., Issekutz A.C.: Down-regulation of monocyte transendothelial migration and endothelial adhesion molecule expression by fibroblast growth factor. Am J Pathol 2002, 160, 2219–2230, doi: <a href="https://doi.org/10.1016/S0002-9440(10)61169-8." target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.1016/S0002-9440(10)61169-8.</a>
Language: English
Page range: 115 - 121
Submitted on: Aug 8, 2023
Accepted on: Jan 10, 2024
Published on: Mar 23, 2024
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2024 Mariola Bochniarz, Agata Hahaj-Siembida, Monika Krajewska-Wędzina, Marcelina Osińska, Anna Tracz, Aleksandra Trościańczyk, Piotr Brodzki, Leszek Krakowski, Urszula Kosior-Korzecka, Aneta Nowakiewicz, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.