References
- Alejo A., Matamoros T., Guerra M., Andrés G.: A proteomic atlas of the African swine fever virus particle. J Virol 2018, 92, e01293–18, doi: 10.1128/JVI.01293-18.
- Andrés G., García-Escudero R., Simón-Mateo C., Viñuela E.: African swine fever virus is enveloped by a two-membraned collapsed cisterna derived from the endoplasmic reticulum. J Virol 1998, 72, 8988–9001, doi: 10.1128/JVI.72.11.8988-9001.1998.
- Borca M.V., Rai A., Ramirez-Medina E., Silva E., Velazquez-Salinas L., Vuono E., Pruitt S., Espinoza N., Gladue D.P.: A cell culture-adapted vaccine virus against the current African swine fever virus pandemic strain. J Virol 2021, 95, e0012321, doi: 10.1128/JVI.00123-21.
- Burmakina G., Malogolovkin A., Tulman E.R., Zsak L., Delhon G., Diel D.G., Shobogorov N.M., Morgunov Y.P., Morgunov S.Y., Kutish G.F., Kolbasov D., Rock D.L.: African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. J Gen Virol 2016, 97, 1670–1675, doi: 10.1099/jgv.0.000490.
- Camacho A., Viñuela E.: Protein p22 of African swine fever virus – an early structural protein that is incorporated into the membrane of infected cells. Virology 1991, 181, 251–257, doi: 10.1016/0042-6822(91)90490-3.
- Chapman D.A.G., Tcherepanov V., Upton C., Dixon L.K.: Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. J Gen Virol 2008, 89, 397–408, doi: 10.1099/vir.0.83343-0.
- Dixon L.K., Twigg S.R.F., Baylis S.A., Vydelingum S., Bristow C., Hammond J.M., Smith G.L.: Nucleotide sequence of a 55 kbp region from the right end of the genome of a pathogenic African swine fever virus isolate (Malawi LIL20/1). J Gen Virol 1994, 75, 1655–1684, doi: 10.1099/0022-1317-75-7-1655.
- Díaz C., Celer V., Frébort I.: The main DNA viruses significantly affecting pig livestock. J Vet Res 2021, 65, 15–25, doi: 10.2478/jvetres-2021-0001.
- El-Kassas S., Faraj R., Martin K., Hajishengallis G., Connell T.D., Nashar T.: Cell clustering and delay/arrest in T-cell division implicate a novel mechanism of immune modulation by E. coli heat-labile enterotoxin B-subunits. Cell Immunol 2015, 295, 150–162, doi: 10.1016/j.cellimm.2015.02.014.
- Frant M., Woźniakowski G., Pejsak Z.: African swine fever (ASF) and ticks. No risk of tick-mediated ASF spread in Poland and Baltic states. J Vet Res 2017, 61, 375–380, doi: 10.1515/jvetres-2017-0055.
- González A., Calvo V., Almazán F., Almendral J.M., Ramírez J.C., de la Vega I., Blasco R., Viñuela E.: Multigene families in African swine fever virus: family 360. J Virol 1990, 64, 2073–2081, doi: 10.1128/jvi.64.5.2073-2081.1990.
- Jancovich J.K., Chapman D., Hansen D.T., Robida M.D., Loskutov A., Craciunescu F., Borovkov A., Kibler K., Goatley L., King K., Netherton C.L., Taylor G., Jacobs B., Sykes K., Dixon L.K.: Immunization of pigs by DNA prime and recombinant vaccinia virus boost to identify and rank African swine fever virus immunogenic and protective proteins. J Virol 2018, 92, e02219–17, doi: 10.1128/JVI.02219-17.
- Ji J., Griffiths K.L., Milburn P.J., Hirst T.R., O’Neill H.C.: The B subunit of Escherichia coli heat-labile toxin alters the development and antigen-presenting capacity of dendritic cells. J Cell Mol Med 2015, 19, 2019–2031, doi: 10.1111/jcmm.12599.
- Johnson A.M., Kaushik R.S., Francis D.H., Fleckenstein J.M., Hardwidge P.R.: Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J Bacteriol 2009, 191, 178–186, doi: 10.1128/JB.00822-08.
- Kelley L.A., Mezulis S., Yates C.M., Wass M.N., Sternberg M.J.E: The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015, 10, 845–858, doi: 10.1038/nprot.2015.053.
- Kim J.-M., Park S.-M., Kim J.-A., Park J.-A., Yi M.-H., Kim N.-S., Bae J.-L., Park S.G., Jang Y.-S., Yang M.-S., Kim D.-H.: Functional pentameric formation via coexpression of the Escherichia coli heat-labile enterotoxin B subunit and its fusion protein subunit with a neutralizing epitope of ApxIIA exotoxin improves the mucosal immunogenicity and protection against challenge by Actinobacillus pleuropneumoniae. Clin Vaccine Immunol 2011, 18, 2168–2177, doi: 10.1128/CVI.05230-11.
- Luka P.D., Erume J., Mwiine F.N., Shamaki D., Yakubu B.: Comparative sequence analysis of different strains of African swine fever virus outer proteins encoding genes from Nigeria, 2009 – 2014. Int J Virol Mol Biol 2016, 5, 16–26, doi: 10.5923/j.ijvmb.20160501.03.
- Ma X., Yao B., Zheng W., Li L.: Comparative study on characterization of recombinant B subunit of E. coli heat-labile enterotoxin (rLTB) prepared from E. coli and P. pastoris. J Microbiol Biotechnol 2010, 20, 550–557, doi: 10.4014/jmb.0911.11002.
- MacLachlan N.J., Dubovi E.J.: Chapter 8: Asfarviridae and Iridoviridae, In: Fenner’s Veterinary Virology, Fifth Edition, edited by N.J. MacLachlan, E.J. Dubovi, Academic Press, Cambridge, MA, 2017, pp. 175–188, doi: 10.1016/B978-0-12-800946-8.00008-8.
- Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L.: Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology 2004, 319, 337–342, doi: 10.1016/j.virol.2003.11.011.
- Netherton C.L., Goatley L.C., Reis A.L., Portugal R., Nash R.H., Morgan S.B., Gault L., Nieto R., Norlin V., Gallardo C., Ho C.-S., Sánchez-Cordón P.J., Taylor G., Dixon L.K.: Identification and immunogenicity of African swine fever virus antigens. Front Immunol 2019, 10, 1318, doi: 10.3389/fimmu.2019.01318.
- Petrovan V., Yuan F., Li Y., Shang P., Murgia M.V., Misra S., Rowland R.R.R., Fang Y.: Development and characterization of monoclonal antibodies against p30 protein of African swine fever virus. Virus Res 2019, 269, 197632, doi: 10.1016/j.virusres.2019.05.010.
- Qiu Z., Li Z., Yan Q., Li Y., Xiong W., Wu K., Li X., Fan S., Zhao M., Ding H., Chen J.: Development of Diagnostic Tests Provides Technical Support for the Control of African Swine Fever. Vaccines 2021, 9, 343, doi: 10.3390/vaccines9040343.
- Ruíz-Gonzalvo F., Rodríguez F., Escribano J.M.: Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology 1996, 218, 285–289, doi: 10.1006/viro.1996.0193.
- Salguero F.J.: Comparative pathology and pathogenesis of African swine fever infection in swine. Front Vet Sci 2020, 7, 282, doi: 10.3389/fvets.2020.00282.
- Salmond R.J., Williams R., Hirst T.R., Williams N.A.: The B subunit of Escherichia coli heat-labile enterotoxin induces both caspase-dependent and -independent cell death pathways in CD8+ T cells. Infect Immun 2004, 72, 5850–5857, doi: 10.1128/IAI.72.10.5850-5857.2004.
- Vuono E.A., Ramirez-Medina E., Pruitt S., Rai A., Espinoza N., Velazquez-Salinas L., Gladue D.P., Borca M.V.: Evaluation of the function of the ASFV KP177R gene, encoding for structural protein p22, in the process of virus replication and in swine virulence. Viruses 2021, 13, 986, doi: 10.3390/v13060986.
- Vydelingum S., Baylis S.A., Bristow C., Smith G.L., Dixon L.K.: Duplicated genes within the variable right end of the genome of a pathogenic isolate of African swine fever virus. J Gen Virol 1993, 74, 2125–2130, doi: 10.1099/0022-1317-74-10-2125.
- Woźniakowski G., Frączyk M., Niemczuk K., Pejsak Z.: Selected aspects related to epidemiology, pathogenesis, immunity, and control of African swine fever. J Vet Res 2016, 60, 119–125, doi: 10.1515/jvetres-2016-0017.
- Zhu X., Fan B., Zhou J., Wang D., Fan H., Li B.: A high-throughput method to analyze the interaction proteins with p22 protein of African swine fever virus in vitro. Front Vet Sci 2021, 8, 719859, doi: 10.3389/fvets.2021.719859.