Have a personal or library account? Click to login

Characterisation of thrombocytes in Osteichthyes

Open Access
|Mar 2019

References

  1. 1. Bianchi M.B., Jerônimo G.T., Pádua S.B., Satake F., Ishikawa M.M., Tavares-Dias M., Martins M.L.: The hematological profile of farmed Sorubim lima: reference intervals, cell morphology and cytochemistry. Vet Arhiv 2014, 84, 677–690.
  2. 2. Burrows A.T., Fletcher T.C., Manning M.J.: Haematology of the turbot, (Psetta maxima, L.): ultrastructural, cytochemical and morphological properties of peripheral blood leucocytes. J Appl Ichthyol 2001, 17, 77–84.10.1046/j.1439-0426.2001.00250.x
  3. 3. da Silva W.F., Egami M.I., Santos A.A., Antoniazzi M.M., Silva M., Gutierre R.C., Paiva M.J.R.: Cytochemical, immunocytochemical, and ultrastructural observations on leukocytes and thrombocytes of fat snook (Centropomus parallelus). Fish Shellfish Immunol 2011, 31, 571–577.10.1016/j.fsi.2011.07.01921802518
  4. 4. Ferdous F., Scott T.R.: A comparative examination of thrombocyte/platelet immunity. Immunol Letters 2015, 163, 32–39.10.1016/j.imlet.2014.11.01025448707
  5. 5. Fink I.R., Ribeiro C.M., Forlenza M., Taverne-Thiele A., Rombout J.H., Savelkoul H.F., Wiegertjes G.F.: Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis. Dev Comp Immunol 2015, 50, 146–154.10.1016/j.dci.2015.02.00825681740
  6. 6. Glass T.J., Lund T.C., Patrinostro X., Tolar J., Bowman T.V., Zon L.I., Blazar B.R.: Stromal cell-derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation. Blood 2011, 118, 766–774.10.1182/blood-2011-01-328476329243821622651
  7. 7. Hill D.J., Rowley A.F.: Are integrins involved in the aggregatory and phagocytic behaviour of fish haemostatic cells? J Exp Biol 1998, 201, 599–608.10.1242/jeb.201.4.5999438834
  8. 8. Huising M.O., van Schijndel J.E., Kruiswijk C.P., Nabuurs S.B., Savelkoul H.F., Flik G., Verburg-van Kemenade B.M. The presence of multiple and differentially regulated interleukin-12p40 genes in bony fishes signifies an expansion of the vertebrate heterodimeric cytokine family. Mol Immunol 2006, 43, 1519–1533. doi: 10.1016/j.molimm.2005.10.010.10.1016/j.molimm.2005.10.01016460805
  9. 9. Jaros J., Korytar T., Huong D.T., Weiss M., Köllner B.: Rainbow trout (Oncorhynchus mykiss) thrombocytes are involved in MHC II dependent antigen presentation. Fish Shellfish Immunol 2013, 34, 1657.10.1016/j.fsi.2013.03.072
  10. 10. Katakura F., Katzenback B.A., Belosevic M.: Molecular and functional characterization of erythropoietin receptor of the goldfish (Carassius auratus L.). Dev Comp Immunol 2014, 45, 191–198.10.1016/j.dci.2014.02.01724657210
  11. 11. Katakura F., Katzenback B.A., Belosevic M.: Recombinant goldfish thrombopoietin up-regulates expression of genes involved in thrombocyte development and synergizes with kit ligand A to promote progenitor cell proliferation and colony formation. Dev Comp Immunol 2015, 49, 157–169.10.1016/j.dci.2014.11.00125450454
  12. 12. Katakura F., Sugie Y., Hayashi K., Nishiya K., Miyamae J., Okano M., Nakanishi T., Moritomo T.: Thrombopoietin (TPO) induces thrombocytic colony formation of kidney cells synergistically with kit ligand A and a non-secretory TPO variant exists in common carp. Dev Comp Immunol 2018, 84, 327–336. doi.org/10.1016/j.dci.2018.03.005.10.1016/j.dci.2018.03.00529522790
  13. 13. Katzenback B.A., Karpman M., Belosevic M.: Distribution and expression analysis of transcription factors in tissues and progenitor cell populations of the goldfish (Carassius auratus L.) in response to growth factors and pathogens. Mol Immunol 2011, 48, 1224–1235.10.1016/j.molimm.2011.03.00721474183
  14. 14. Katzenback B.A., Katakura F., Belosevic M.: Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. Dev Comp Immunol 2016, 58, 68–85.10.1016/j.dci.2015.10.02426546240
  15. 15. Kawamoto H., Ikawa T., Masuda K., Wada H., Katsura Y.: A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev 2010, 238, 23–36.10.1111/j.1600-065X.2010.00959.x20969582
  16. 16. Kawamoto H., Katsura Y.: A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloidlymphoid dichotomy. Trends Immunol 2009, 30, 193–200.10.1016/j.it.2009.03.00119356980
  17. 17. Khandekar G., Kim S., Jagadeeswaran P.: Zebrafish Thrombocytes: Functions and Origins. Adv Hematology 2012, ID 857058, doi.org/10.1155/2012/857058.10.1155/2012/857058338848222778746
  18. 18. Kim S., Carrillo M., Radhakrishnan U.P., Jagadeeswaran P.: Role of zebrafish thrombocyte and non-thrombocyte microparticles in hemostasis. Blood Cell Mol Dis 2012, 48, 188–196.10.1016/j.bcmd.2011.12.008646226222306208
  19. 19. Kobayashi I., Katakura F., Moritomo T.: Isolation and characterization of hematopoietic stem cells in teleost fish. Dev Comp Immunol 2016, 58, 86–94.10.1016/j.dci.2016.01.00326801099
  20. 20. Kobayashi I., Moritomo T., Ototake M., Nakanishi T.: Isolation of side population cells from ginbuna carp (Carassius auratus langsdorfii) kidney hematopoietic tissues. Dev Comp Immunol 2007, 31, 696–707.10.1016/j.dci.2006.10.00317129605
  21. 21. Kobayashi I., Saito K., Moritomo T., Araki K., Takizawa F., Nakanishi T.: Characterization and localization of side population (SP) cells in zebrafish kidney hematopoietic tissue. Blood 2008, 111, 1131–1137.10.1182/blood-2007-08-10429917932252
  22. 22. Köllner B., Fischer U., Rombout J.H.W.M., Taverne-Thiele J.J., Hansen J.D.: Potential involvement of rainbow trout thrombocytes in immune functions: a study using a panel of monoclonal antibodies and RT-PCR. Dev Comp Immunol 2004, 28, 1049–1062.10.1016/j.dci.2004.03.00515236934
  23. 23. Lin H.F., Traver D., Zhu H., Dooley K., Paw B.H., Zon L.I., Handinet R.I.: Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 2005, 106, 3803–3810. doi:10.1182/blood-2005-01-0179.10.1182/blood-2005-01-0179189509416099879
  24. 24. Nagasawa T., Nakayasu C., Rieger A.M., Barreda D.R., Somamoto T., Nakao M.: Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Front Immunol 2014, 5, 445. doi.org/10.3389/fimmu.2014.00445.10.3389/fimmu.2014.00445416531925278940
  25. 25. Nagasawa T., Somamoto T., Nakao M.: Carp thrombocyte phagocytosis requires activation factors secreted from other leukocytes. Dev Comp Immunol 2015, 52, 107–111.10.1016/j.dci.2015.05.00225978929
  26. 26. Ning Y.J., Lu X.J., Chen J.: Molecular characterization of a tissue factor gene from ayu: a pro-inflammatory mediator via regulating monocytes/macrophages. Dev Comp Immunol 2018, 84, 37–47.10.1016/j.dci.2018.02.00229408399
  27. 27. Nombela I., Puente-Marin S., Chico V., Villena A.J., Carracedo B., Ciordia S., Mena M.C., Mercado L., Perez L., Coll J., Estepa A.: Identification of diverse defense mechanisms in trout red blood cells in response to VHSV halted viral replication. F1000 Research, 2017, 6, 1958. doi: 10.12688/f1000research.12985.1.10.12688/f1000research.12985.1
  28. 28. Ortega-Villaizan M.D.M.: The role of red blood cells in the immune response of fish. https://www.frontiersin.org/research-topics/6573/the-role-of-red-blood-cells-in-the-immune-response-of-fish.
  29. 29. Passer B.J., Chen C.H., Miller N.W., Cooper M.D.: Catfish thrombocytes express an integrin-like CD41/CD61 complex. Exp Cell Res 1997, 234, 347–353.10.1006/excr.1997.36119260904
  30. 30. Pietretti D., Spaink H.P., Falco A., Forlenza M., Wiegertjes G.F.: Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Mol Immunol 2013, 56, 745–756.10.1016/j.molimm.2013.07.01223958499
  31. 31. Prasad G., Charles S.: Haematology and leucocyte enzyme cytochemistry of a threatened yellow catfish Horabagrus brachysoma (Gunther 1864). Fish Physiol Biochem 2010, 36, 435–443.10.1007/s10695-009-9313-y19306068
  32. 32. Rombout J.H.W.M., Koumans-van Diepen J.C.E., Emmer P.M., Taverne-Thiele J.J., Taverne N.: Characterization of carp thrombocytes with specific monoclonal antibodies. J Fish Biol 1996, 49, 521–531.10.1111/j.1095-8649.1996.tb00047.x
  33. 33. Rough K.M., Nowak B.F., Reuter R.E.: Haematology and leukocyte morphology of wild caught Thunnus maccoyii. J Fish Biol 2005, 66, 1649–1659.10.1111/j.0022-1112.2005.00710.x
  34. 34. Shigdar S., Cook D., Jones P., Harford A., Ward A.C.: Blood cells of Murray cod Maccullochella peelii peelii (Mitchell). J Fish Biol 2007, 70, 973–980.10.1111/j.1095-8649.2007.01351.x
  35. 35. Shigdar S., Harford A., Ward A.C.: Cytochemical characterisation of the leucocytes and thrombocytes from Murray cod (Maccullochella peelii peelii, Mitchell). Fish Shellfish Immunol 2009, 26, 731–736.10.1016/j.fsi.2009.03.01019332132
  36. 36. Stosik M.: Morphology and phagocytic activity of carp's thrombocytes, Cyprinus carpio L. Med Weter 1993, 49, 184–186.
  37. 37. Stosik M.: Thrombocyte number and their phagocytic activity in carp (Cyprinus carpio L.) of different age. Med Weter 1995, 51, 621–623.
  38. 38. Stosik M., Deptuła W.: Thrombocytes of fish. Med Weter 1992, 48, 556–558.
  39. 39. Stosik M., Deptuła W.: Studies on selected protective functions of thrombocytes and neutrophilic granulocytes in healthy and sick carp. Pol J Vet Sci 2000, 3, 219–225.
  40. 40. Stosik M., Deptuła W., Trávniček M.: Studies on number and on ingesting ability of thrombocytes in sick carps (Cyprinus carpio L.). Vet Med-Czech 2001, 46, 12–16.10.17221/7845-VETMED
  41. 41. Stosik M., Deptuła W., Trávniček M., Baldy-Chudzik K.: Phagocytic and bactericidal activity of blood thrombocytes in carps (Cyprinus carpio). Vet Med-Czech 2002, 47, 21–25.10.17221/5798-VETMED
  42. 42. Svoboda O., Stachura D.L., Machoňová O., Pajer P., Brynda J., Zon L.I., Traver D., Bartůněk P.: Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood 2014, 124, 220–228.10.1182/blood-2014-03-564682409368124869937
  43. 43. Tavares-Dias M., Moraes F.R.: Morphological, cytochemical, and ultrastructural study of thrombocytes and leukocytes in neotropical fish, Brycon orbignyanus Valenciannes, 1850 (Characidae, Bryconinae). J Submicrosc Cytol Pathol 2006, 38, 209–215.
  44. 44. Tavares-Dias M., Ono E.A., Pilarski F., Moraes F.R.: Can thrombocytes participate in the removal of cellular debris in the blood circulation of teleost fish? A cytochemical study and ultrastructural analysis. J Appl Ichthyol 2007, 23, 709–712.10.1111/j.1439-0426.2007.00850.x
  45. 45. Ueda I.K., Egami M.I., Sasso W.S., Matushima E.R.: Cytochemical aspects of the peripheral blood cells of Oreochromis (Tilapia niloticus. Linnaeus, 1758) (Cichlidae, Teleostei): Part II. Brazilian J Vet Res Animal Sci 2001, 38, 273–277.10.1590/S1413-95962001000600005
  46. 46. Zimmerman L.M., Vogel L.A., Edwards K.A., Bowden R.M.: Phagocytic B cells in a reptile. Biol Lett 2010, 6, 270–273. doi:10.1098/rsbl.2009.0692.10.1098/rsbl.2009.0692286506619846448
Language: English
Page range: 123 - 131
Submitted on: Aug 21, 2018
Accepted on: Mar 4, 2019
Published on: Mar 28, 2019
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2019 Michał Stosik, Beata Tokarz-Deptuła, Wiesław Deptuła, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.