References
- Monson, M.; Heuser, C.; Einerson, B.D.; Esplin, I.; Snow, G.; Varner, M.; Esplin, M.S. Evaluation of an external fetal electrocardiogram monitoring system: A randomized controlled trial. Am. J. Obstet. Gynecol. 2020, 223, e1–e244.
- Zwanenburg, F.; Jongbloed, M.R.M.; Van Geloven, N.; Ten Harkel, A.D.J.; Van Lith, J.M.M.; Haak, M.C. Assessment of human fetal cardiac autonomic nervous system development using color tissue Doppler imaging. Echocardiography 2021, 38, 974–981.
- Fotiadou, E.; Xu, M.; Van Erp, B.; Van Sloun, R.J.G.; Vullings, R. Deep Convolutional Long Short-Term Memory Network for Fetal Heart Rate Extraction. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 608–611.
- Sulas, E.; Urru, M.; Tumbarello, R.; Raffo, L.; Pani, D. Systematic analysis of single-and multi-reference adaptive filters for non-invasive fetal electrocardiography. Math. Biosci. Eng. 2019, 17, 286–308.
- Taha, L.; Abdel-Raheem, E. A null space-based blind source separation for fetal electrocardiogram signals. Sensors 2020, 20, 3536.
- Barnova, K.; Martinek, R.; Jaros, R.; Kahankova, R.; Matonia, A.; Jezewski, M.; Czabanski, R.; Horoba, K.; Jezewski, J. A novel algorithm based on ensemble empirical mode decomposition for non-invasive fetal ECG extraction. PLoS ONE 2021, 16, e0256154.
- Wu, S.; Shen, Y.; Zhou, Z.; Lin, L.; Zeng, Y.; Gao, X. Research of fetal ECG extraction using wavelet analysis and adaptive filtering. Comput. Biol. Med. 2013, 43, 1622–1627.
- Vasudeva, B.; Deora, P.; Pradhan, P.M.; Dasgupta, S. Efficient implementation of LMS adaptive filter-based FECG extraction on an FPGA. Healthc. Technol. Lett. 2020, 7, 125–131.
- Ferranti, M.; Le, T.H.; Vandebril, R. A comparison between the complex symmetric based and classical computation of the singular value decomposition of normal matrices. Numer. Algorithms 2021, 67, 109–120.
- Kumar, A.; Tomar, H.; Mehla, V.K.; Komaragiri, R.; Kumar, M. Stationary wavelet transform based ECG signal denoising method. ISA Trans. 2021, 114, 251–262.
- Martinek, R.; Kahankova, R.; Jezewski, J.; Jaros, R.; Mohylova, J.; Fajkus, M.; Nedoma, J.; Janku, P.; Nazeran, H. Comparative effectiveness of ICA and PCA in extraction of fetal ECG from abdominal signals: Toward non-invasive fetal monitoring. Front. Physiol. 2018, 9, 648.
- Sarafan, S.; Le, T.; Naderi, A.M.; Nguyen, Q.D.; Kuo, B.T.Y.; Ghirmai, T.; Han, H.D.; Lau, M.P.H.; Cao, H. Investigation of methods to extract fetal electrocardiogram from the mother’s abdominal signal in practical scenarios. Technologies 2020, 8, 33.
- S. Mirza, K. Bhole and P. Singh, "Fetal ECG Extraction and QRS Detection using Independent Component Analysis," 2020 16th IEEE International Colloquium on Signal Processing & Its Applications (CSPA), 2020, pp. 157-161, doi: 10.1109/CSPA48992.2020.9068696.
- Hao, J.; Yang, Y.; Zhou, Z.; Wu, S. Fetal Electrocardiogram Signal Extraction Based on Fast Independent Component Analysis and Singular Value Decomposition. Sensors 2022, 22, 3705. https://doi.org/10.3390/s22103705
- Anumukonda M, Lakkamraju P, Chowdhury SR. FPGA-Based High-Performance Phonocardiography System for Extraction of Cardiac Sound Components Using Inverse Delayed Neuron Model. Front Med Technol. 2021 Aug 12;3:666650. doi: 10.3389/fmedt.2021.666650. PMID: 35047923; PMCID: PMC8757846.
- E. Fotiadou and R. Vullings, “Multi-Channel Fetal ECG Denoising with Deep Convolutional Neural Networks,” Frontiers in Pediatrics, vol.8, no.508, pp.1-13, 2020.
- 18.Al-Saadany, D., Attallah, O., Elzaafarany, K., Nasser, A. (2022). A Machine Learning Framework for Fetal Arrhythmia Detection via Single ECG Electrode. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13351. Springer, Cham. https://doi.org/10.1007/978-3-031-08754-7_60
- 19.K. Meddah, M. Kedir Talha, H. Zairi, M. Nouah, S. Hadji, M. A Ait, B. Bessekri and H. Cherrih, “FPGA IMPLEMENTATION SYSTEM FOR QRS COMPLEX DETECTION,” Biomedical Engineering: Applications, Basis and Communications, Vol. 32, No. 1, pp. 1-14, 2020
- 20.Y. Ching Ting, Fang-Wen Lo, Pei-Yun Tsai, “Implementation for Fetal ECG Detection from Multi-channel Abdominal Recordings with 2D Convolutional Neural Network,” Journal of Signal Processing Systems, pp.1-13, 2021, http://link.springer.com/article/article/article/10.1007/s11265-021-01676-w.
- 21.C. M. Jose, C. Aarthi, “FPGA based fetal ECG denoising and extraction formedical diagnosis,” International Journal of Advance Research in Science and Engineering, vol.7, no.1, pp. 453-462, 2018.
- 22.Hua J, Rao J, Peng Y, Liu J, Tang J. Deep Compressive Sensing on ECG Signals with Modified Inception Block and LSTM. Entropy (Basel). 2022 Jul 25;24(8):1024. doi: 10.3390/e24081024. PMID: 35893004; PMCID: PMC9394370.
- 23.Edward B. Panganiban, Arnold C. Paglinawan, Wen Yaw Chung, Gilbert Lance S. Paa, “ECG diagnostic support system (EDSS): A deep learning neural network based classification system for detecting ECG abnormal rhythms from a low-powered wearable biosensors,” Sensing and Bio-Sensing Research, vol. 31, no. 100398, pp. 1-15, 2021.
- Kumar, M.; Pachori, R.; Acharya, U. Automated diagnosis of myocardial infarction ECG signals using sample entropy in flexible analytic wavelet transform framework. Entropy 2017, 19, 488.
- Liu, W.; Zhang, M.; Zhang, Y.; Liao, Y.; Huang, Q.; Chang, S.; Wang, H.; He, J. Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Informat. 2017, 22, 1434–1444.
- Lui, H.W.; Chow, K.L. Multiclass classification of myocardial infarction with convolutional and recurrent neural networks for portable ECG devices. Informat. Med. Unlocked 2018, 13, 26–33.
- Zhang, Y.; Li, J. Application of Heartbeat-Attention Mechanism for Detection of Myocardial Infarction Using 12-Lead ECG Records. Appl. Sci. 2019, 9, 3328.
- Liu, W.; Wang, F.; Huang, Q.; Chang, S.; Wang, H.; He, J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inform. 2019, 24, 503–514.
- Han, C.; Shi, L. ML–ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. Comput. Methods Programs Biomed. 2020, 185, 105138.
- Liu, W.; Wang, F.; Huang, Q.; Chang, S.; Wang, H.; He, J. MFB-CBRNN: A hybrid network for MI detection using 12-lead ECGs. IEEE J. Biomed. Health Inform. 2019, 24, 503–514.
- Zhang, G.; Tang, L.; Zhou, L.; Liu, Z.; Liu, Y.; Jiang, Z. Principal Component Analysis Method with Space and Time Windows for Damage Detection. Sensors 2019, 19, 2521.
- H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “FA3C: FPGA-accelerated deep reinforcement learning,” in Proc. 24th Int. Conf. Architect. Support Program. Lang. Oper. Syst., 2019, pp. 499–513.
- 33.Y. Guan, et al., “FP-DNN: An automated framework for mapping deep neural networks onto FPGAs with RTL-HLS hybrid templates,” in Proc. IEEE 25th Annu. Int. Symp. Field-Programmable Custom Comput. Mach., 2017, pp. 152–159.
- T. J. Ham, et al., “A33: Accelerating attention mechanisms in neural networks with approximation,” in Proc. 26th IEEE Int. Symp. High-Perform. Comput. Archit., 2020, pp. 328–332
- Y. Guan, Z. Yuan, G. Sun, and J. Cong, “FPGA-based accelerator for long short-term memory recurrent neural networks,” in Proc. 22nd Asia South Pacific Des. Autom. Conf., 2017, pp. 629–634.