References
- A Zhang, Y., & Liu, X. (2023). "IoT-Based HSs: Opportunities, Challenges, and Future Directions." IEEE Internet of Things Journal, 10(6), 4608-4622. https://doi.org/10.1109/JIOT.2023.3203745.
- Zhang, Z., Cheng, X., & Luo, X. (2023). "Deep Learning for IoT-Based Healthcare Monitoring: A Review." Journal of Healthcare Engineering, 2023, 456789. https://doi.org/10.1155/2023/456789.
- Liu, Y., & Zhang, H. (2022). "Resource-Efficient IoT HSs for Smart Cities." Sensors, 22(15), 5347. https://doi.org/10.3390/s22155347.
- Wang, L., & Zhao, X. (2022). "Optimizing IoT-Based HSs Using Edge Computing and Machine Learning." Journal of Medical Systems, 46(4), 129. https://doi.org/10.1007/s10916-022-01719-9.
- Yang, F., Chen, G., & Liu, W. (2022). "IoT for Healthcare: A Survey on Data Processing Techniques." IEEE Access, 10, 13951-13967. https://doi.org/10.1109/ACCESS.2022.3147468.
- Abbas, A., & Safdar, A. (2021). "Edge Computing for IoT-Enabled Smart Healthcare: A Survey." Future Generation Computer Systems, 112, 263-281. https://doi.org/10.1016/j.future.2020.06.042.
- Singh, M., & Kaur, M. (2021). "Applications of Machine Learning in IoT for Healthcare: A Comprehensive Review." Journal of Computational Science, 47, 101268. https://doi.org/10.1016/j.jocs.2020.101268.
- Bhardwaj, S., & Singh, A. (2021). "AI-Driven Smart Healthcare: Challenges, Opportunities, and Future Directions." Journal of AI and Data Mining, 9(3), 209-220. https://doi.org/10.11648/j.jaidm.20210903.11.
- Gupta, A., & Meena, K. (2021). "Smart Healthcare Using IoT: A Review of Technological Advancements." Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2021.05.016.
- Sharma, R., & Gupta, A. (2020). "Deep Learning Approaches for Healthcare Data Analysis: A Survey." Medical Image Analysis, 64, 101722. https://doi.org/10.1016/j.media.2020.101722.
- Harish, P., & Kumar, S. (2021). "Resource-Constrained Computing for Real-Time Health Monitoring: A Survey." Healthcare Technology Letters, 8(2), 51-59. https://doi.org/10.1049/htl.2020.0033.
- Fernandez, A., & Vasquez, C. (2021). "IoT-Enabled HSs: Recent Trends and Future Prospects." IEEE Transactions on Industrial Informatics, 17(8), 5424-5432. https://doi.org/10.1109/TII.2021.3054123.
- Al-Doghman, F., & Dehghantanha, A. (2020). "Artificial Intelligence and IoT for Healthcare: The Next Frontier." AI Open, 1, 1-9. https://doi.org/10.1016/j.aiopen.2020.01.001.
- Yang, B., & Li, X. (2020). "Smart HSs Based on IoT: A Review of Recent Advances." International Journal of Distributed Sensor Networks, 16(4), 155014772091365. https://doi.org/10.1177/1550147720913652.
- Lee, J., & Kim, M. (2020). "An Edge Computing-Based IoT System for Real-Time Healthcare Monitoring." Sensors, 20(14), 3992. https://doi.org/10.3390/s20143992.
- Xu, G., Xu, M. An Effective Prediction of Resource Using Machine Learning in Edge Environments for the Smart Healthcare Industry. J Grid Computing 22, 54 (2024). https://doi.org/10.1007/s10723-024-09768-0.
- Chinbat, T., Madanian, S., Airehrour, D. et al. Machine learning cryptography methods for IoT in healthcare. BMC Med Inform Decis Mak 24, 153 (2024). https://doi.org/10.1186/s12911-024-02548-6.
- Rahman, A., Debnath, T., Kundu, D., Khan, M. S. I., Aishi, A. A., Sazzad, S., Sayduzzaman, M., & Band, S. S. (2024). Machine learning and deep learning-based approach in smart healthcare: Recent advances, applications, challenges and opportunities. AIMS public health, 11(1), 58–109. https://doi.org/10.3934/publichealth.2024004.
- Islam, M. R., Kabir, M. M., Mridha, M. F., Alfarhood, S., Safran, M., & Che, D. (2023). Deep Learning-Based IoT System for Remote Monitoring and Early Detection of Health Issues in Real-Time. Sensors, 23(11), 5204. https://doi.org/10.3390/s23115204.
- Munnangi, A. K., UdhayaKumar, S., Ravi, V., Sekaran, R., & Kannan, S. (2023). Survival study on deep learning techniques for IoT enabled smart HS. Health and technology, 13(2), 215–228. https://doi.org/10.1007/s12553-023-00736-4.
- Mazin Alshamrani, IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey, Journal of King Saud University-Computer and Information Sciences, Volume 34, Issue 8, Part A, 2022, ISSN 1319-1578, https://doi.org/10.1016/j.jksuci.2021.06.005.
- A.V.L.N. Sujith, Guna Sekhar Sajja, V. Mahalakshmi, Shibili Nuhmani, B. Prasanalakshmi, Systematic review of smart health monitoring using deep learning and Artificial intelligence, Neuroscience Informatics, Volume 2, Issue 3, 2022, 100028, ISSN 2772-5286, https://doi.org/10.1016/j.neuri.2021.100028.
- Thilagam, K., Beno, A., Lakshmi, M. V., Wilfred, C. B., George, S. M., Karthikeyan, M., Peroumal, V., Ramesh, C., & Karunakaran, P. (2022). Secure IoT healthcare architecture with deep learning-based access control system. Security and Communication Networks, 2022, Article 2638613.https://doi.org/10.1155/2022/2638613.
- Zobaed, Sm & Hassan, Mehedi & Islam, Muhammad Usama & Haque, Md Enamul. (2021). Deep Learning in IoT-Based Healthcare Applications 10.1201/9781003032175-9.
- AI. Newaz, A. K. Sikder, M. A. Rahman and A. S. Uluagac, "HealthGuard: A Machine Learning-Based Security Framework for Smart HSs," 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain, 2019, pp. 389-396, doi: 10.1109/SNAMS.2019.8931716.