Have a personal or library account? Click to login
Reconceiving the Edge Intelligence Based IoT Devices for an effective Classification of ECG Systems Cover

Reconceiving the Edge Intelligence Based IoT Devices for an effective Classification of ECG Systems

Open Access
|Feb 2025

References

  1. A. A He, Y., Fu, B., Yu, J., Li, R., & Jiang, R. (2020). Efficient Learning of Healthcare Data from IoT Devices by Edge Convolution Neural Networks. Applied Sciences, 10(24), 8934. https://doi.org/10.3390/app10248934
  2. Yang, Zhe & Zhou, Qihao & Lei, Lei & Zheng, Kan & Xiang, Wei. (2016). An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare. Journal of Medical Systems. 40. 286. 10.1007/s10916-016-0644-9.
  3. Rincon, J. A., Guerra-Ojeda, S., Carrascosa, C., & Julian, V. (2020). An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks. Sensors, 20(24), 7353. https://doi.org/10.3390/s20247353.
  4. Verma, P., Jha, R., & Singh, N. (2024). Real-time ECG monitoring using IoT-edge computing and explainable AI. Journal of Healthcare Informatics Research, 7(1), 25–40. https://doi.org/10.1007/s41666-024-00183-w.
  5. Zagan, I., Găitan, V. G., Petrariu, A.-I., Iuga, N., & Brezulianu, A. (2020). Design, Fabrication, and Testing of an IoT Healthcare Cardiac Monitoring Device. Computers, 9(1), 15. https://doi.org/10.3390/computers9010015
  6. Serhani, M. A., T El Kassabi, H., Ismail, H., & Nujum Navaz, A. (2020). ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors (Basel, Switzerland), 20(6), 1796. https://doi.org/10.3390/s20061796
  7. Abdulmalek, S., Nasir, A., Jabbar, W. A., Almuhaya, M. A. M., Bairagi, A. K., Khan, M. A., & Kee, S. H. (2022). IoT-Based Healthcare-Monitoring System towards Improving Quality of Life: A Review. Healthcare (Basel, Switzerland), 10(10), 1993. https://doi.org/10.3390/healthcare10101993
  8. Yeh, L.-R., Chen, W.-C., Chan, H.-Y., Lu, N.-H., Wang, C.-Y., Twan, W.-H., Du, W.-C., Huang, Y.-H., Hsu, S.-Y., & Chen, T.-B. (2021). Integrating ECG Monitoring and Classification via IoT and Deep Neural Networks. Biosensors, 11(6), 188. https://doi.org/10.3390/bios11060188
  9. Hayyolalam, Vahideh & Aloqaily, Moayad & Ozkasap, Oznur & Guizani, Mohsen. (2021). Edge Intelligence for Empowering IoT-Based Healthcare Systems. IEEE Wireless Communications. 28. 6-14. 10.1109/MWC.001.2000345.
  10. Ejaz, M., Kumar, T., Kovacevic, I., Ylianttila, M., & Harjula, E. (2021). Health-BlockEdge: Blockchain-Edge Framework for Reliable Low-Latency Digital Healthcare Applications. Sensors, 21(7), 2502. https://doi.org/10.3390/s21072502
  11. Pradhan, Bikash & Bhattacharyya, Saugat & Pal, Kunal. (2021). IoT-Based Applications in Healthcare Devices. Journal of Healthcare Engineering. 2021. 1-18. 10.1155/2021/6632599.
  12. Revanth Kumar, Puranam & Reddy, B Shilpa. (2024). An IoT-Based Smart Healthcare System with Edge Intelligence Computing. 10.1201/9781003401841-5.
  13. Kolhar, M., Kazi, R. N. A., Mohapatra, H., & Al Rajeh, A. M. (2024). AI-Driven Real-Time Classification of ECG Signals for Cardiac Monitoring Using i-AlexNet Architecture. Diagnostics (Basel, Switzerland), 14(13), 1344. https://doi.org/10.3390/diagnostics14131344.
  14. Ni, J. (2023). Enhanced IoT-based electrocardiogram monitoring system with deep learning (UNLV Theses, Dissertations, Professional Papers, and Capstones No. 4747). University of Nevada, Las Vegas. http://dx.doi.org/10.34917/36114772
  15. Lazar, Arokia. (2023). Electrocardiogram signal classification in an IoT environment using an adaptive deep neural networks. 10.1007/s00521-023-08534-9
  16. Saha, P. K., & Singh, A. (2023). IoT based smart ECG monitoring system. International Journal for Research in Applied Science and Engineering Technology, 11(3), 2892–2897. https://doi.org/10.22214/ijraset.2023.49303
  17. Cañón-Clavijo, R. E., Montenegro-Marin, C. E., Gaona-Garcia, P. A., & Ortiz-Guzmán, J. (2023). IoT Based System for Heart Monitoring and Arrhythmia Detection Using Machine Learning. Journal of healthcare engineering, 2023, 6401673. https://doi.org/10.1155/2023/6401673
  18. Rahaman, Md & Shamrat, F M & Kashem, Mohammod & Akter, Most & Chakraborty, Sovon & Ahmed, Marzia & Mustary, Shobnom. (2022). Internet of things based electrocardiogram monitoring system using machine learning algorithm. International Journal of Electrical and Computer Engineering. 12. 3739-3751. 10.11591/ijece.v12i4.pp3739-3751.
  19. Rahman, M. O., Kashem, M. A., Nayan, A., Akter, M. F., Rabbi, F., Ahmed, M., & Asaduzzaman, M. (2022). Internet of Things (IoT) based ECG system for rural health care. https://doi.org/10.48550/arXiv.2208.02226
  20. Karim, A. M. (2022). Effective classification of ECG signals using enhanced convolutional neural network in IoT. arXiv. https://doi.org/10.48550/arXiv.2202.05154.
  21. Heaney, J., Buick, J., Hadi, M. U., & Soin, N. (2022). Internet of Things-Based ECG and Vitals Healthcare Monitoring System. Micromachines, 13(12), 2153. https://doi.org/10.3390/mi13122153
Language: English
Page range: 79 - 92
Submitted on: Aug 29, 2024
Accepted on: Oct 2, 2024
Published on: Feb 24, 2025
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Sangamesh H, Ramesh Cheripelli, Nijaguna G S, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.