Have a personal or library account? Click to login
Deep Learning Models for Biometric Recognition based on Face, Finger vein, Fingerprint, and Iris: A Survey Cover

Deep Learning Models for Biometric Recognition based on Face, Finger vein, Fingerprint, and Iris: A Survey

Open Access
|Jun 2024

References

  1. A S. Dargan, and M. Kumar, “A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities, Exp. Sys. with Appl., vol. 143, pp. 113114, Apr. 2020.
  2. AK. Jain, and A. Kumar, “Biometric recognition: an overview”, 2ed, gene. Bio.: The ethical, legal and social context, pp. 49–79, 2012.
  3. T. Sabhanayagam, V.P. Venkatesan, and K. Senthamaraikannan, “A comprehensive survey on various biometric systems”, Int. Jou. of Applied Eng. Res., vol. 13, no.5, pp. 2276–2297, 2018.
  4. K. Sundararajan and D. L. Woodard, “Deep Learning for Biometrics,” ACM Computing Surveys, vol. 51, no. 3, pp. 1–34, May 2018.
  5. K. W. Bowyer, K. Chang, and P. Flynn, “A survey of approaches and challenges in 3D and multi-modal 3D+2D face recognition,” Computer Vision and Image Understanding, vol. 101, no. 1, pp. 1–15, Jan. 2006.
  6. A. I. Awad and A. E. Hassanien, “Impact of some biometric modalities on forensic science,” Studies in Computational Intelligence, pp. 47–62, 2014.
  7. A. Ross and A. K. Jain, “Human recognition using biometrics: an overview,” Annales Des Télécommunications, vol. 62, no. 1–2, pp. 11–35, Jan. 2007.
  8. Abd Al-Latief, Shahad Thamear, Salman Yussof, Azhana Ahmad, Saif Mohanad Khadim, and Raed Abdulkareem Abdulhasan. “Instant Sign Language Recognition by WAR Strategy Algorithm Based Tuned Machine Learning.” International Journal of Networked and Distributed Computing (2024): 1–18..
  9. J. Wayman, Anil Jain, D. Maio, and Davide Maltoni, Biometric Systems Technology, Design and Performance Evaluation. London Springer-Verlag London Limited, 2005.
  10. A. K. Jain, A. Ross, and S. Prabhakar, “An Introduction to Biometric Recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1, pp. 4–20, Jan. 2004.
  11. J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp. 85–117, Jan. 2015, doi: 10.1016/j.neunet.2014.09.003.
  12. S. M. Almabdy and L. A. Elrefaei, “An overview of deep learning techniques for biometric systems,” Artificial Intelligence for Sustainable Development: Theory, Practice and Future Applications, pp. 127–170, 2020.
  13. Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539
  14. A. I. Georgevici and M. Terblanche, “Neural networks and deep learning: a brief introduction.” Intensive Care Medicine, vol. 45, no. 5, pp. 712–714, 2019, doi: 10.1007/s00134-019-05537-w.
  15. D. Rong, L. Xie, and Y. Ying, “Computer vision detection of foreign objects in walnuts using deep learning,” Computers and Electronics in Agriculture, vol. 162, pp. 1001–1010, Jul. 2019, doi: 10.1016/j.compag.2019.05.019.
  16. Abdulhasan, Raed Abdulkareem, Shahad Thamear Abd Al-latief, and Saif Mohanad Kadhim. “Instant learning based on deep neural network with linear discriminant analysis features extraction for accurate iris recognition system.” Multimedia Tools and Applications 83, no. 11 (2024): 32099–32122.
  17. Minaee, Shervin, A. Abdolrashidi, H. Su, M. Bennamoun, and D. Zhang, “Biometrics recognition using deep learning: A survey,” arXiv preprint arXiv:1912.00271, 2019.
  18. Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures,” Neural Computation, vol. 31, no. 7, pp. 1235–1270, Jul. 2019, doi: 10.1162/neco_a_01199.
  19. S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.
  20. J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling,” arXiv.org, 2014. https://arxiv.org/abs/1412.3555
  21. R. Dey and F. M. Salem, “Gate-variants of Gated Recurrent Unit (GRU) neural networks,” 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Aug. 2017, doi: https://doi.org/10.1109/mwscas.2017.8053243.
  22. D. P. Kingma and M. Welling, “An Introduction to Variational Autoencoders,” Foundations and Trends® in Machine Learning, vol. 12, no. 4, pp. 307–392, 2019, doi: 10.1561/2200000056.
  23. G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep Belief Nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, Jul. 2006, doi: 10.1162/neco.2006.18.7.1527.
  24. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural network architectures and their applications,” Neurocomputing, vol. 234, pp. 11–26, Apr. 2017, doi: 10.1016/j.neucom.2016.12.038.
  25. I. Goodfellow et al., “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, Oct. 2020, doi: 10.1145/3422622.
  26. Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–21, 2021, doi: https://doi.org/10.1109/tnnls.2021.3084827.
  27. X. Zhang, F. Chen, and R. Huang, “A Combination of RNN and CNN for Attention-based Relation Classification,” Procedia Computer Science, vol. 131, pp. 911–917, 2018, doi: https://doi.org/10.1016/j.procs.2018.04.221.
  28. M. Ma and Z. Mao, “Deep Convolution-based LSTM Network for Remaining Useful Life Prediction,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2020, doi: https://doi.org/10.1109/tii.2020.2991796.
  29. M. Z. Alom et al., “A State-of-the-Art Survey on Deep Learning Theory and Architectures,” Electronics, vol. 8, no. 3, p. 292, Mar. 2019, doi: https://doi.org/10.3390/electronics8030292.
  30. A. M. Karim, H. Kaya, M. S. Güzel, M. R. Tolun, F. V. Çelebi, and A. Mishra, “A Novel Framework Using Deep Auto-Encoders Based Linear Model for Data Classification,” Sensors, vol. 20, no. 21, p. 6378, Nov. 2020, doi: https://doi.org/10.3390/s20216378.
  31. O. I. Abiodun et al., “Comprehensive Review of Artificial Neural Network Applications to Pattern Recognition,” IEEE Access, vol. 7, pp. 158820–158846, 2019, doi: https://doi.org/10.1109/access.2019.2945545.
  32. G. Kaur, G. Singh, and V. Kumar, “A Review on Biometric Recognition,” International Journal of Bio-Science and Bio-Technology, vol. 6, no. 4, pp. 69–76, Aug. 2014, doi: 10.14257/ijbsbt.2014.6.4.07.
  33. H. El Khiyari and H. Wechsler, “Face Recognition across Time Lapse Using Convolutional Neural Networks,” Journal of Information Security, vol. 07, no. 03, pp. 141–151, 2016.
  34. L. Tian, C. Fan, and Y. Ming, “Multiple scales combined principle component analysis deep learning network for face recognition,” Journal of Electronic Imaging, vol. 25, no. 2, p. 023025, Apr. 2016.
  35. C. Xiong, L. Liu, X. Zhao, S. Yan, and T.-K. Kim, “Convolutional Fusion Network for Face Verification in the Wild,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 3, pp. 517–528, Mar. 2016.
  36. M. O. Simón et al., “Improved RGB-D-T based face recognition,” IET Biometrics, vol. 5, no. 4, pp. 297–303, Jun. 2016.
  37. H. Li and C. Y. Suen, “Robust face recognition based on dynamic rank representation,” Pattern Recognition, vol. 60, pp. 13–24, Dec. 2016, doi: 10.1016/j.patcog.2016.05.014.
  38. R. Singh and H. Om, “Newborn face recognition using deep convolutional neural network,” Multimedia Tools and Applications, vol. 76, no. 18, pp. 19005–19015, Feb. 2017, doi: 10.1007/s11042-016-4342-x.
  39. Y. Dong, Y. Liu, and S. Lian, “Automatic age estimation based on deep learning algorithm,” Neurocomputing, vol. 187, pp. 4–10, Apr. 2016, doi: 10.1016/j.neucom.2015.09.115.
  40. M. Peng, C. Wang, T. Chen, and G. Liu, “NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification,” Information, vol. 7, no. 4, p. 61, Oct. 2016, doi: 10.3390/info7040061.
  41. X. Luo, R. Shen, J. Hu, J. Deng, L. Hu, and Q. Guan, “A Deep Convolution Neural Network Model for Vehicle Recognition and Face Recognition,” Procedia Computer Science, vol. 107, pp. 715–720, 2017, doi: 10.1016/j.procs.2017.03.153.
  42. K. Guo, S. Wu, and Y. Xu, “Face recognition using both visible light image and near-infrared image and a deep network,” CAAI Transactions on Intelligence Technology, vol. 2, no. 1, pp. 39–47, Mar. 2017.
  43. J. Zhao, Y. Lv, Z. Zhou, and F. Cao, “A novel deep learning algorithm for incomplete face recognition: Low-rank-recovery network,” Neural Networks, vol. 94, pp. 115–124, Oct. 2017, doi: 10.1016/j.neunet.2017.06.013.
  44. S. Al-Waisy, R. Qahwaji, S. Ipson, and S. Al-Fahdawi, “A multimodal deep learning framework using local feature representations for face recognition,” Machine Vision and Applications, vol. 29, no. 1, pp. 35–54, Sep. 2017.
  45. Y. Ding, Y. Cheng, X. Cheng, B. Li, X. You, and X. Yuan, “Noise-resistant network: a deep-learning method for face recognition under noise,” EURASIP Journal on Image and Video Processing, vol. 2017, no. 1, Jun. 2017, doi: 10.1186/s13640-017-0188-z.
  46. B. K. Tripathi, “On the complex domain deep machine learning for face recognition,” Applied Intelligence, vol. 47, no. 2, pp. 382–396, Mar. 2017, doi: 10.1007/s10489-017-0902-7.
  47. N. Zhuang, Y. Yan, S. Chen, H. Wang, and C. Shen, “Multi-label learning based deep transfer neural network for facial attribute classification,” Pattern Recognition, vol. 80, pp. 225–240, Aug. 2018, doi: 10.1016/j.patcog.2018.03.018.
  48. Y. Li, W. Zheng, Z. Cui, and T. Zhang, “Face recognition based on recurrent regression neural network,” Neurocomputing, vol. 297, pp. 50–58, Jul. 2018, doi: 10.1016/j.neucom.2018.02.037.
  49. X. Sun, P. Wu, and S. C. H. Hoi, “Face detection using deep learning: An improved faster RCNN approach,” Neurocomputing, vol. 299, pp. 42–50, Jul. 2018, doi: 10.1016/j.neucom.2018.03.030.
  50. A. Vinay, A. Gupta, A. Bharadwaj, A. Srinivasan, K. N. B. Murthy, and S. Natarajan, “Deep Learning on Binary Patterns for Face Recognition,” Procedia Computer Science, vol. 132, pp. 76–83, 2018, doi: 10.1016/j.procs.2018.05.164.
  51. K. Santoso and G. P. Kusuma, “Face Recognition Using Modified OpenFace,” Procedia Computer Science, vol. 135, pp. 510–517, 2018, doi: 10.1016/j.procs.2018.08.203.
  52. Y. Li, Z. Lu, J. Li, and Y. Deng, “Improving Deep Learning Feature with Facial Texture Feature for Face Recognition,” Wireless Personal Communications, vol. 103, no. 2, pp. 1195–1206, Feb. 2018, doi: 10.1007/s11277-018-5377-2.
  53. W. Liu, “Video Face Detection Based on Deep Learning,” Wireless Personal Communications, vol. 102, no. 4, pp. 2853–2868, Jan. 2018.
  54. D. Luo, G. Wen, D. Li, Y. Hu, and E. Huan, “Deep-learning-based face detection using iterative bounding-box regression,” Multimedia Tools and Applications, vol. 77, no. 19, pp. 24663–24680, Feb. 2018.
  55. J. Kong, M. Chen, M. Jiang, J. Sun, and J. Hou, “Face Recognition Based on CSGF(2D)2PCANet,” IEEE Access, vol. 6, pp. 45153–45165, 2018, doi: 10.1109/access.2018.2865425.
  56. M. Iqbal, M. S. I. Sameem, N. Naqvi, S. Kanwal, and Z. Ye, “A deep learning approach for face recognition based on angularly discriminative features,” Pattern Recognition Letters, vol. 128, pp. 414–419, Dec. 2019, doi: 10.1016/j.patrec.2019.10.002.
  57. M. Z. Khan, S. Harous, S. U. Hassan, M. U. Ghani Khan, R. Iqbal, and S. Mumtaz, “Deep Unified Model For Face Recognition Based on Convolution Neural Network and Edge Computing,” IEEE Access, vol. 7, pp. 72622–72633, 2019, doi: 10.1109/access.2019.2918275.
  58. P. Görgel and A. Simsek, “Face recognition via Deep Stacked Denoising Sparse Autoencoders (DSDSA),” Applied Mathematics and Computation, vol. 355, pp. 325–342, Aug. 2019, doi: 10.1016/j.amc.2019.02.071.
  59. C. Peng, N. Wang, J. Li, and X. Gao, “DLFace: Deep local descriptor for cross-modality face recognition,” Pattern Recognition, vol. 90, pp. 161–171, Jun. 2019, doi: 10.1016/j.patcog.2019.01.041.
  60. Y.-K. Li, “L1-2D2PCANet: a deep learning network for face recognition,” Journal of Electronic Imaging, vol. 28, no. 02, p. 1, Mar. 2019.
  61. A. Elmahmudi and H. Ugail, “Deep face recognition using imperfect facial data,” Future Generation Computer Systems, vol. 99, pp. 213–225, Oct. 2019, doi: 10.1016/j.future.2019.04.025.
  62. P. Wang, F. Su, Z. Zhao, Y. Guo, Y. Zhao, and B. Zhuang, “Deep Class-Skewed Learning for Face Recognition,” Neurocomputing, vol. 363, pp. 35–45, Jun. 2019, doi: 10.1016/j.neucom.2019.04.085.
  63. R. Bendjillali, M. Beladgham, K. Merit, and A. Taleb-Ahmed, “Improved Facial Expression Recognition Based on DWT Feature for Deep CNN,” Electronics, vol. 8, no. 3, p. 324, Mar. 2019.
  64. Z. Pei, H. Xu, Y. Zhang, M. Guo, and Y.-H. Yang, “Face Recognition via Deep Learning Using Data Augmentation Based on Orthogonal Experiments,” Electronics, vol. 8, no. 10, p. 1088, Sep. 2019.
  65. J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive Angular Margin Loss for Deep Face Recognition,” openaccess.thecvf.com, 2019. https://openaccess.thecvf.com/content_CVPR_2019/html/Deng_ArcFace_Additive_Angular_Margin_Loss_for_Deep_Face_Recognition_CVPR_2019_paper.html
  66. T. Goel and R. Murugan, “Classifier for Face Recognition Based on Deep Convolutional - Optimized Kernel Extreme Learning Machine,” Computers & Electrical Engineering, vol. 85, p. 106640, Jul. 2020, doi: 10.1016/j.compeleceng.2020.106640.
  67. S. Ruan et al., “Multi-Pose Face Recognition Based on Deep Learning in Unconstrained Scene,” Applied Sciences, vol. 10, no. 13, p. 4669, Jul. 2020, doi: 10.3390/app10134669.
  68. M. Masud et al., “Deep learning-based intelligent face recognition in IoT-cloud environment,” Computer Communications, vol. 152, pp. 215–222, Feb. 2020, doi: 10.1016/j.comcom.2020.01.050.
  69. X. Li, Z. Yang, and H. Wu, “Face Detection Based on Receptive Field Enhanced Multi-Task Cascaded Convolutional Neural Networks,” IEEE Access, vol. 8, pp. 174922–174930, 2020, doi: 10.1109/access.2020.3023782.
  70. B. Ríos Sánchez, D. Costa-da Silva, N. Martin-Yuste, and C. Sanchez-Avila, “Deep Learning for Face Recognition on Mobile Devices,” IET Biometrics, vol. 9, no. 3, Jan. 2020, doi: 10.1049/iet-bmt.2019.0093.
  71. P. Wang, P. Wang, and E. Fan, “Violence detection and face recognition based on deep learning,” Pattern Recognition Letters, vol. 142, pp. 20–24, Feb. 2021, doi: 10.1016/j.patrec.2020.11.018.
  72. Z. Pan et al., “Clinical application of an automatic facial recognition system based on deep learning for diagnosis of Turner syndrome,” Endocrine, vol. 72, no. 3, Nov. 2020, doi: 10.1007/s12020-020-02539-3.
  73. N. K. Mishra, M. Dutta, and S. K. Singh, “Multiscale parallel deep CNN (mpdCNN) architecture for the real low-resolution face recognition for surveillance,” Image and Vision Computing, vol. 115, p. 104290, Nov. 2021, doi: 10.1016/j.imavis.2021.104290.
  74. B. S. M. Teja, C. S. Anita, D. Rajalakshmi, and M. A. Berlin, “A CNN based facial expression recognizer,” Materials Today: Proceedings, vol. 37, pp. 2578–2581, 2021, doi: 10.1016/j.matpr.2020.08.501.
  75. J. Mohammed Sahan, E. I. Abbas, and Z. M. Abood, “A facial recognition using a combination of a novel one dimension deep CNN and LDA,” Materials Today: Proceedings, Jul. 2021, doi: 10.1016/j.matpr.2021.07.325.
  76. X. Lv, M. Su, and Z. Wang, “Application of Face Recognition Method Under Deep Learning Algorithm in Embedded Systems,” Microprocessors and Microsystems, p. 104034, Jan. 2021, doi: 10.1016/j.micpro.2021.104034.
  77. R. Gupta and L. K. Vishwamitra, “Facial expression recognition from videos using CNN and feature aggregation,” Materials Today: Proceedings, Mar. 2021, doi: 10.1016/j.matpr.2020.11.795.
  78. H. Ben Fredj, S. Bouguezzi, and C. Souani, “Face recognition in unconstrained environment with CNN,” The Visual Computer, vol. 37, no. 2, Feb. 2021.
  79. Q. Meng, S. Zhao, Z. Huang, and F. Zhou, “MagFace: A Universal Representation for Face Recognition and Quality Assessment,” openaccess.thecvf.com, 2021. https://openaccess.thecvf.com/content/CVPR2021/html/Meng_MagFace_A_Universal_Representation_for_Face_Recognition_and_Quality_Assessment_CVPR_2021_paper.html (accessed Apr. 17, 2023).
  80. J. Deng, J. Guo, J. Yang, A. Lattas, and S. Zafeiriou, “Variational Prototype Learning for Deep Face Recognition,” openaccess.thecvf.com, 2021. https://openaccess.thecvf.com/content/CVPR2021/html/Deng_Variational_Prototype_Learning_for_Deep_Face_Recognition_CVPR_2021_paper.html (accessed Apr. 17, 2023).
  81. A. J. A. AlBdairi et al., “Face Recognition Based on Deep Learning and FPGA for Ethnicity Identification,” Applied Sciences, vol. 12, no. 5, p. 2605, Mar. 2022.
  82. W. Hariri, “Efficient masked face recognition method during the COVID-19 pandemic,” Signal, Image and Video Processing, vol. 16, no. 3, Apr. 2022.
  83. H. N. Vu, M. H. Nguyen, and C. Pham, “Masked face recognition with convolutional neural networks and local binary patterns,” Applied Intelligence, vol. 52, no. 5, Mar. 2022.
  84. Y.-H. Huang and H. H. Chen, “Deep face recognition for dim images,” Pattern Recognition, vol. 126, p. 108580, Jun. 2022, doi: 10.1016/j.patcog.2022.108580.
  85. G. Kaur et al., “Face mask recognition system using CNN model,” Neuroscience Informatics, vol. 2, no. 3, p. 100035, Sep. 2022, doi: 10.1016/j.neuri.2021.100035.
  86. J. Zhang, X. Yan, Z. Cheng, and X. Shen, “A face recognition algorithm based on feature fusion,” Concurrency and Computation: Practice and Experience, vol. 34, no. 14, p. e5748, Jun. 2022.
  87. M. S. Ebrahimi Saadabadi, S. R. Malakshan, S. Soleymani, M. Mostofa, and N. M. Nasrabadi, “Information Maximization for Extreme Pose Face Recognition,” IEEE Xplore, Oct. 01, 2022. https://ieeexplore.ieee.org/abstract/document/10007931
  88. M. S. E. Saadabadi, S. R. Malakshan, A. Zafari, M. Mostofa, and N. M. Nasrabadi, “A Quality Aware Sample-to-Sample Comparison for Face Recognition,” openaccess.thecvf.com, 2023. https://openaccess.thecvf.com/content/WACV2023/html/Saadabadi_A_Quality_Aware_Sample-to-Sample_Comparison_for_Face_Recognition_WACV_2023_paper.html (accessed Apr. 17, 2023).
  89. F. Liu, M. Kim, A. Jain, and X. Liu, “Controllable and Guided Face Synthesis for Unconstrained Face Recognition,” Lecture Notes in Computer Science, pp. 701–719, 2022, doi: https://doi.org/10.1007/978-3-031-19775-8_41.
  90. R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, “Performance evaluation of fingerprint verification systems,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 3–18, Jan. 2006.
  91. S. Kim, B. Park, B. S. Song, and S. Yang, “Deep belief network based statistical feature learning for fingerprint liveness detection,” Pattern Recognition Letters, vol. 77, pp. 58–65, Jul. 2016, doi: 10.1016/j.patrec.2016.03.015.
  92. R. F. Nogueira, R. de Alencar Lotufo, and R. Campos Machado, “Fingerprint Liveness Detection Using Convolutional Neural Networks,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 6, pp. 1206–1213, Jun. 2016, doi: 10.1109/tifs.2016.2520880.
  93. X. Wang, L. Gao, S. Mao, and S. Pandey, “CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach,” IEEE Transactions on Vehicular Technology, vol. 1, no. 66, pp. 1–1, 2016, doi: 10.1109/tvt.2016.2545523.
  94. H.-U. Jang, D. Kim, S.-M. Mun, S. Choi, and H.-K. Lee, “DeepPore: Fingerprint Pore Extraction Using Deep Convolutional Neural Networks,” IEEE Signal Processing Letters, vol. 24, no. 12, pp. 1808–1812, Dec. 2017, doi: 10.1109/lsp.2017.2761454.
  95. W.-S. Jeon and S.-Y. Rhee, “Fingerprint Pattern Classification Using Convolution Neural Network,” INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS, vol. 17, no. 3, pp. 170–176, Sep. 2017, doi: 10.5391/ijfis.2017.17.3.170.
  96. W. Zhicheng, H. Zhang, J. Peng, and L. Yang, “Fingerprint identification based on neural network for large fingerprint database,” in Third International Workshop on Pattern Recognition, 2018, vol. 10828, pp. 18–24.
  97. K. Cao and A. K. Jain, “Automated Latent Fingerprint Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 4, pp. 788–800, Mar. 2018.
  98. J. Li, J. Feng, and C.-C. . J. Kuo, “Deep convolutional neural network for latent fingerprint enhancement,” Signal Processing: Image Communication, vol. 60, pp. 52–63, Feb. 2018, doi: 10.1016/j.image.2017.08.010.
  99. P. Tertychnyi, C. Ozcinar, and G. Anbarjafari, “Low-quality fingerprint classification using deep neural network,” IET Biometrics, vol. 7, no. 6, pp. 550–556, Nov. 2018, doi: 10.1049/iet-bmt.2018.5074.
  100. D. Peralta, I. Triguero, S. García, Y. Saeys, J. M. Benitez, and F. Herrera, “On the use of convolutional neural networks for robust classification of multiple fingerprint captures,” International Journal of Intelligent Systems, vol. 33, no. 1, pp. 213–230, Nov. 2017.
  101. Y. Yu, F. Liu, and S. Mao, “Fingerprint Extraction and Classification of Wireless Channels Based on Deep Convolutional Neural Networks,” Neural Processing Letters, vol. 48, no. 3, pp. 1767–1775, Feb. 2018.
  102. C. Lin and A. Kumar, “Contactless and partial 3D fingerprint recognition using multi-view deep representation,” Pattern Recognition, vol. 83, pp. 314–327, Nov. 2018, doi: 10.1016/j.patcog.2018.05.004.
  103. H. Y. Jung and Y. S. Heo, “Fingerprint liveness map construction using convolutional neural network,” Electronics Letters, vol. 54, no. 9, pp. 564–566, May 2018, doi: 10.1049/el.2018.0621.
  104. K. Merchant, S. Revay, G. Stantchev, and B. Nousain, “Deep Learning for RF Device Fingerprinting in Cognitive Communication Networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 160–167, Feb. 2018.
  105. R. Donida Labati, A. Genovese, E. Muñoz, V. Piuri, and F. Scotti, “A novel pore extraction method for heterogeneous fingerprint images using Convolutional Neural Networks,” Pattern Recognition Letters, vol. 113, pp. 58–66, Oct. 2018, doi: 10.1016/j.patrec.2017.04.001.
  106. W. Shao, H. Luo, F. Zhao, Y. Ma, Z. Zhao, and A. Crivello, “Indoor Positioning Based on Fingerprint-Image and Deep Learning,” IEEE Access, vol. 6, pp. 74699–74712, 2018, doi: 10.1109/access.2018.2884193.
  107. F. Zeng, S. Hu, and K. Xiao, “Research on partial fingerprint recognition algorithm based on deep learning,” Neural Computing and Applications, vol. 31, no. 9, pp. 4789–4798, Jun. 2018, doi: 10.1007/s00521-018-3609-8.
  108. N. F. Lori, I. Ramalhosa, P. Marques, and V. Alves, “Deep Learning Based Pipeline for Fingerprinting Using Brain Functional MRI Connectivity Data,” Procedia Computer Science, vol. 141, pp. 539–544, 2018, doi: 10.1016/j.procs.2018.10.129.
  109. D. Li and Y. Lei, “Deep Learning for Fingerprint-Based Outdoor Positioning via LTE Networks,” Sensors, vol. 19, no. 23, p. 5180, Nov. 2019.
  110. hhhhsjL. Peng, J. Zhang, M. Liu, and A. Hu, “Deep Learning Based RF Fingerprint Identification Using Differential Constellation Trace Figure,” IEEE Transactions on Vehicular Technology, vol. 69, no. 1, pp. 1091–1095, Jan. 2020.
  111. C. Yuan, Z. Xia, X. Sun, and Q. M. J. Wu, “Deep Residual Network With Adaptive Learning Framework for Fingerprint Liveness Detection,” IEEE Transactions on Cognitive and Developmental Systems, vol. 12, no. 3, pp. 461–473, Sep. 2020.
  112. F. Zhang, S. Xin, and J. Feng, “Combining global and minutia deep features for partial high-resolution fingerprint matching,” Pattern Recognition Letters, vol. 119, pp. 139–147, Mar. 2019, doi: 10.1016/j.patrec.2017.09.014.
  113. J. B. Kho, W. Lee, H. Choi, and J. Kim, “An incremental learning method for spoof fingerprint detection,” Expert Systems with Applications, vol. 116, pp. 52–64, Feb. 2019, doi: 10.1016/j.eswa.2018.08.055.
  114. Z. Liu, B. Dai, X. Wan, and X. Li, “Hybrid Wireless Fingerprint Indoor Localization Method Based on a Convolutional Neural Network,” Sensors, vol. 19, no. 20, p. 4597, Oct. 2019.
  115. A. Haider, Y. Wei, S. Liu, and S.-H. Hwang, “Pre- and Post-Processing Algorithms with Deep Learning Classifier for Wi-Fi Fingerprint-Based Indoor Positioning,” Electronics, vol. 8, no. 2, p. 195, Feb. 2019.
  116. D. Song, Y. Tang, and J. Feng, “Aggregating minutia-centred deep convolutional features for fingerprint indexing,” Pattern Recognition, vol. 88, pp. 397–408, Apr. 2019, doi: 10.1016/j.patcog.2018.11.018.
  117. T. Zia, M. Ghafoor, S. A. Tariq, and I. A. Taj, “Robust fingerprint classification with Bayesian convolutional networks,” IET Image Processing, vol. 13, no. 8, pp. 1280–1288, Jun. 2019, doi: 10.1049/iet-ipr.2018.5466.
  118. D. M. Uliyan, S. Sadeghi, and H. A. Jalab, “Anti-spoofing method for fingerprint recognition using patch based deep learning machine,” Engineering Science and Technology, an International Journal, vol. 102, Jun. 2020, Accessed: Nov. 21, 2019.
  119. F. Liu, Y. Zhao, G. Liu, and L. Shen, “Fingerprint pore matching using deep features,” Pattern Recognition, vol. 102, p. 107208, Jun. 2020, doi: 10.1016/j.patcog.2020.107208.
  120. X. Yang, Q. Hu, and S. Li, “Recognition and classification of damaged fingerprint based on deep learning fuzzy theory,” Journal of Intelligent & Fuzzy Systems, vol. 38, no. 4, pp. 3529–3537, Apr. 2020, doi: 10.3233/jifs-179575.
  121. W. J. Wong and S.-H. Lai, “Multi-task CNN for restoring corrupted fingerprint images,” Pattern Recognition, vol. 101, p. 107203, May 2020, doi: 10.1016/j.patcog.2020.107203.
  122. S. Arora and M. P. S. Bhatia, “Fingerprint Spoofing Detection to Improve Customer Security in Mobile Financial Applications Using Deep Learning,” Arabian Journal for Science and Engineering, vol. 45, no. 4, pp. 2847–2863, Oct. 2019.
  123. F. F. Alkhalid, “The effect of optimizers in fingerprint classification model utilizing deep learning,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 20, no. 2, p. 1098, Nov. 2020, doi: 10.11591/ijeecs.v20.i2.pp1098-1102.
  124. Z. Zhang, S. Liu, and M. Liu, “A multi-task fully deep convolutional neural network for contactless fingerprint minutiae extraction,” Pattern Recognition, vol. 120, p. 108189, Dec. 2021, doi: 10.1016/j.patcog.2021.108189.
  125. Nur-A-Alam, M. Ahsan, M. A. Based, J. Haider, and M. Kowalski, “An intelligent system for automatic fingerprint identification using feature fusion by Gabor filter and deep learning,” Computers & Electrical Engineering, vol. 95, p. 107387, Oct. 2021
  126. M. Leghari, S. Memon, L. D. Dhomeja, A. H. Jalbani, and A. A. Chandio, “Deep Feature Fusion of Fingerprint and Online Signature for Multimodal Biometrics,” Computers, vol. 10, no. 2, p. 21, Feb. 2021, doi: 10.3390/computers10020021.
  127. H. Li, “Feature extraction, recognition, and matching of damaged fingerprint: Application of deep learning network,” Concurrency and Computation: Practice and Experience, vol. 33, no. 6, Oct. 2020.
  128. D. Li and Z. Niu, “A Wireless Fingerprint Positioning Method Based on Wavelet Transform and Deep Learning,” ISPRS International Journal of Geo-Information, vol. 10, no. 7, p. 442, Jun. 2021, doi: 10.3390/ijgi10070442.
  129. S. Lee, S.-W. Jang, D. Kim, H. Hahn, and G.-Y. Kim, “A Novel Fingerprint Recovery Scheme using Deep Neural Network-based Learning,” Multimedia Tools and Applications, vol. 80, no. 26, Nov. 2021.
  130. K. C. Deepika and G. Shivakumar, “A Robust Deep Features Enabled Touchless 3D-Fingerprint Classification System,” SN Computer Science, vol. 2, no. 4, May 2021, doi: 10.1007/s42979-021-00657-x.
  131. P. Nahar, N. S. Chaudhari, and S. K. Tanwani, “Fingerprint classification system using CNN,” Multimedia Tools and Applications, vol. 81, no. 17, pp. 24515–24527, Mar. 2022, doi: 10.1007/s11042-022-12294-4.
  132. A. M. Ibrahim, A. K. Eesee, and R. R. O. Al-Nima, “Deep fingerprint classification network,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 19, no. 3, p. 893, Jun. 2021, doi: 10.12928/telkomnika.v19i3.18771.
  133. A. Ilham Gustisyaf and A. Sinaga, “Implementation of Convolutional Neural Network to Classification Gender based on Fingerprint,” International Journal of Modern Education and Computer Science, vol. 13, no. 4, pp. 55–67, Aug. 2021, doi: 10.5815/ijmecs.2021.04.05.
  134. L. Shi, S. Lan, H. Gui, Y. Yang, and Z. Guo, “A novel 2D contactless fingerprint matching method,” Neurocomputing, vol. 500, pp. 547–555, Aug. 2022, doi: 10.1016/j.neucom.2022.05.092.
  135. C. Yuan, P. Yu, Z. Xia, X. Sun, and Q. M. J. Wu, “FLD-SRC: Fingerprint Liveness Detection for AFIS Based on Spatial Ridges Continuity,” IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 4, pp. 817–827, Jun. 2022, doi: 10.1109/jstsp.2022.3174655.
  136. A.-M. Dincă Lăzărescu, S. Moldovanu, and L. Moraru, “A Fingerprint Matching Algorithm Using the Combination of Edge Features and Convolution Neural Networks,” Inventions, vol. 7, no. 2, p. 39, May 2022, doi: 10.3390/inventions7020039.
  137. F. Saeed, M. Hussain, and H. A. Aboalsamh, “Automatic Fingerprint Classification Using Deep Learning Technology (DeepFKTNet),” Mathematics, vol. 10, no. 8, p. 1285, Apr. 2022, doi: 10.3390/math10081285.
  138. S. Gao, H. Y. K. Chau, K. Wang, H. Ao, R. S. Varghese, and H. W. Ressom, “Convolutional Neural Network-Based Compound Fingerprint Prediction for Metabolite Annotation,” Metabolites, vol. 12, no. 7, p. 605, Jun. 2022, doi: 10.3390/metabo12070605.
  139. J. G. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 11, pp. 1148–1161, 1993, doi: 10.1109/34.244676.
  140. N. Liu, M. Zhang, H. Li, Z. Sun, and T. Tan, “DeepIris: Learning pairwise filter bank for heterogeneous iris verification,” Pattern Recognition Letters, vol. 82, pp. 154–161, Oct. 2016, doi: 10.1016/j.patrec.2015.09.016.
  141. S. Pravinthraja and K. Umamaheswari, “Optimized Features Extraction of IRIS Recognition by Using MADLA to Ensure Secure Authentication,” Circuits and Systems, vol. 07, no. 08, pp. 1927–1933, 2016, doi: 10.4236/cs.2016.78167.
  142. F. He, Y. Han, H. Wang, J. Ji, Y. Liu, and Z. Ma, “Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network,” Journal of Electronic Imaging, vol. 26, no. 2, p. 023005, Mar. 2017, doi: 10.1117/1.jei.26.2.023005.
  143. M. Arsalan et al., “Deep Learning-Based Iris Segmentation for Iris Recognition in Visible Light Environment,” Symmetry, vol. 9, no. 11, p. 263, Nov. 2017.
  144. O. OYEDOTUN and A. KHASHMAN, “Iris nevus diagnosis: convolutional neural network and deep belief network,” TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES, vol. 25, no. 2, pp. 1106–1115, 2017, doi: 10.3906/elk-1507-190.
  145. H. Proenca and J. C. Neves, “Deep-PRWIS: Periocular Recognition Without the Iris and Sclera Using Deep Learning Frameworks,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 4, pp. 888–896, Apr. 2018.
  146. K. Nguyen, C. Fookes, A. Ross, and S. Sridharan, “Iris Recognition With Off-the-Shelf CNN Features: A Deep Learning Perspective,” IEEE Access, vol. 6, pp. 18848–18855, 2018, doi: 10.1109/access.2017.2784352.
  147. A. S. Al-Waisy, R. Qahwaji, S. Ipson, S. Al-Fahdawi, and T. A. M. Nagem, “A multi-biometric iris recognition system based on a deep learning approach,” Pattern Analysis and Applications, vol. 21, no. 3, pp. 783–802, Aug. 2018, doi: 10.1007/s10044-017-0656-1.
  148. F. Marra, G. Poggi, C. Sansone, and L. Verdoliva, “A deep learning approach for iris sensor model identification,” Pattern Recognition Letters, vol. 113, pp. 46–53, Oct. 2018, doi: 10.1016/j.patrec.2017.04.010.
  149. Q. Zhang, H. Li, Z. Sun, and T. Tan, “Deep Feature Fusion for Iris and Periocular Biometrics on Mobile Devices,” IEEE Transactions on Information Forensics and Security, vol. 13, no. 11, pp. 2897–2912, Nov. 2018, doi: 10.1109/tifs.2018.2833033.
  150. Z. Wang, C. Li, H. Shao, and J. Sun, “Eye Recognition With Mixed Convolutional and Residual Network (MiCoRe-Net),” IEEE Access, vol. 6, pp. 17905–17912, 2018, doi: 10.1109/access.2018.2812208.
  151. L. A. Elrefaei, D. H. Hamid, A. A. Bayazed, S. S. Bushnak, and S. Y. Maasher, “Developing Iris Recognition System for Smartphone Security,” Multimedia Tools and Applications, vol. 77, no. 12, pp. 14579–14603, Aug. 2017, doi: 10.1007/s11042-017-5049-3.
  152. D. Nguyen, N. Baek, T. Pham, and K. Park, “Presentation Attack Detection for Iris Recognition System Using NIR Camera Sensor,” Sensors, vol. 18, no. 5, p. 1315, Apr. 2018, doi: 10.3390/s18051315.
  153. D. Nguyen, T. Pham, Y. Lee, and K. Park, “Deep Learning-Based Enhanced Presentation Attack Detection for Iris Recognition by Combining Features from Local and Global Regions Based on NIR Camera Sensor,” Sensors, vol. 18, no. 8, p. 2601, Aug. 2018, doi: 10.3390/s18082601.
  154. Maram. G Alaslani and L. A. Elrefaei, “Convolutional Neural Network Based Feature Extraction for IRIS Recognition,” International Journal of Computer Science and Information Technology, vol. 10, no. 2, pp. 65–78, Apr. 2018, doi: 10.5121/ijcsit.2018.10206.
  155. Y. Chen, et al, “Adapted deep convnets technology for robust iris recognition”, Journal of Electronic Imaging, vol. 28, no.3, pp. 033008, 2019.
  156. T. Zhao, Y. Liu, G. Huo, and X. Zhu, “A Deep Learning Iris Recognition Method Based on Capsule Network Architecture,” IEEE Access, vol. 7, pp. 49691–49701, 2019, doi: 10.1109/access.2019.2911056.
  157. K. Wang and A. Kumar, “Cross-spectral iris recognition using CNN and supervised discrete hashing,” Pattern Recognition, vol. 86, pp. 85–98, Feb. 2019, doi: 10.1016/j.patcog.2018.08.010.
  158. Z. Zhao and A. Kumar, “A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features,” Pattern Recognition, vol. 93, pp. 546–557, Sep. 2019, doi: 10.1016/j.patcog.2019.04.010.
  159. Y. Lee, K. Kim, T. Hoang, M. Arsalan, and K. Park, “Deep Residual CNN-Based Ocular Recognition Based on Rough Pupil Detection in the Images by NIR Camera Sensor,” Sensors, vol. 19, no. 4, p. 842, Feb. 2019.
  160. X. Liu, Y. Bai, Y. Luo, Z. Yang, and Y. Liu, “Iris recognition in visible spectrum based on multi-layer analogous convolution and collaborative representation,” Pattern Recognition Letters, vol. 117, pp. 66–73, Jan. 2019, doi: 10.1016/j.patrec.2018.12.003.
  161. W. Zhang, X. Lu, Y. Gu, Y. Liu, X. Meng, and J. Li, “A Robust Iris Segmentation Scheme Based on Improved U-Net,” IEEE Access, vol. 7, pp. 85082–85089, 2019.
  162. M. Liu, Z. Zhou, P. Shang, and D. Xu, “Fuzzified Image Enhancement for Deep Learning in Iris Recognition,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 1, pp. 92–99, Jan. 2020.
  163. M. B. Lee, Y. H. Kim, and K. R. Park, “Conditional Generative Adversarial Network-Based Data Augmentation for Enhancement of Iris Recognition Accuracy,” IEEE Access, vol. 7, pp. 122134–122152, 2019.
  164. K. Wang and A. Kumar, “Toward More Accurate Iris Recognition Using Dilated Residual Features,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 12, pp. 3233–3245, Dec. 2019.
  165. E. Ribeiro, A. Uhl, and F. Alonso-Fernandez, “Iris super-resolution using CNNs: is photo-realism important to iris recognition?,” IET Biometrics, vol. 8, no. 1, pp. 69–78, Aug. 2018.
  166. M. Trokielewicz, A. Czajka, and P. Maciejewicz, “Post-mortem iris recognition with deep-learning-based image segmentation,” Image and Vision Computing, vol. 94, p. 103866, Feb. 2020, doi: 10.1016/j.imavis.2019.103866.
  167. M. Choudhary, V. Tiwari, and U. Venkanna, “Enhancing human iris recognition performance in unconstrained environment using ensemble of convolutional and residual deep neural network models,” Soft Computing, vol. 24, no. 15, pp. 11477–11491, Aug. 2020.
  168. L. Shuai et al., “Multi-Source Feature Fusion and Entropy Feature Lightweight Neural Network for Constrained Multi-State Heterogeneous Iris Recognition,” IEEE Access, vol. 8, pp. 53321–53345, 2020.
  169. Q. Hu, S. Yin, H. Ni, and Y. Huang, “An End to End Deep Neural Network for Iris Recognition,” Procedia Computer Science, vol. 174, pp. 505–517, 2020, doi: 10.1016/j.procs.2020.06.118.
  170. M. Sardar, S. Banerjee, and S. Mitra, “Iris Segmentation Using Interactive Deep Learning,” IEEE Access, vol. 8, pp. 219322–219330, 2020, doi: 10.1109/access.2020.3041519.
  171. Md. S. Azam and H. K. Rana, “Iris Recognition using Convolutional Neural Network,” International Journal of Computer Applications, vol. 175, no. 12, pp. 24–28, Aug. 2020.
  172. H. Hwang and E. C. Lee, “Near-Infrared Image-Based Periocular Biometric Method Using Convolutional Neural Network,” IEEE Access, vol. 8, pp. 158612–158621, 2020, doi: 10.1109/access.2020.3020142.
  173. Y. Chen, C. Wu, and Y. Wang, “T-Center: A Novel Feature Extraction Approach Towards Large-Scale Iris Recognition,” IEEE Access, vol. 8, pp. 32365–32375, 2020.
  174. J. Jayanthi, E. L. Lydia, N. Krishnaraj, T. Jayasankar, R. L. Babu, and R. A. Suji, “An effective deep learning features based integrated framework for iris detection and recognition,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 3, pp. 3271–3281, Jun. 2020.
  175. Y. Chen, C. Wu, and Y. Wang, “Whether normalized or not? Towards more robust iris recognition using dynamic programming,” Image and Vision Computing, vol. 107, p. 104112, Mar. 2021.
  176. S. Lei, B. Dong, Y. Li, F. Xiao, and F. Tian, “Iris recognition based on few-shot learning,” Computer Animation and Virtual Worlds, vol. 32, no. 3–4, May 2021.
  177. C.-W. Chuang and C.-P. Fan, “Deep-Learning Based Joint Iris and Sclera Recognition with YOLO Network for Identity Identification,” Journal of Advances in Information Technology, vol. 12, no. 1, pp. 60–65, 2021.
  178. S. D. Shirke and C. Rajabhushnam, “Local gradient pattern and deep learning-based approach for the iris recognition at-a-distance,” International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 25, no. 1, pp. 49–64, Apr. 2021.
  179. M. B. Lee, J. K. Kang, H. S. Yoon, and K. R. Park, “Enhanced Iris Recognition Method by Generative Adversarial Network-Based Image Reconstruction,” IEEE Access, vol. 9, pp. 10120–10135, 2021, doi: 10.1109/ACCESS.2021.3050788.
  180. G. Liu, W. Zhou, L. Tian, W. Liu, Y. Liu, and H. Xu, “An Efficient and Accurate Iris Recognition Algorithm Based on a Novel Condensed 2-ch Deep Convolutional Neural Network,” Sensors, vol. 21, no. 11, p. 3721, May 2021.
  181. Y. Chen, Z. Zeng, Y. Zeng, H. Gan, and H. Chen, “DenseSENet: more accurate and robust cross-domain iris recognition,” Journal of Electronic Imaging, vol. 30, no. 06, Dec. 2021.
  182. J. J. Winston, D. J. Hemanth, A. Angelopoulou, and E. Kapetanios, “Hybrid deep convolutional neural models for iris image recognition,” Multimedia Tools and Applications, vol. 81, no. 7, Mar. 2022.
  183. J. E. Zambrano, D. P. Benalcazar, C. A. Perez, and K. W. Bowyer, “Iris Recognition Using Low-Level CNN Layers Without Training and Single Matching,” IEEE Access, vol. 10, pp. 41276–41286, 2022.
  184. J. Sun, S. Zhao, S. Miao, X. Wang, and Y. Yu, “Open-set iris recognition based on deep learning,” IET Image Processing, Apr. 2022.
  185. T. Lu, C. Wang, Y. Wang, and Z. Sun, “Multitask deep active contour-based iris segmentation for off-angle iris images,” Journal of Electronic Imaging, vol. 31, no. 04, Feb. 2022.
  186. N. Manisha A and G. Sachin R, “Iris Recognition System Based on Convolutional Neural Network,” in ICT with Intelligent Applications, Singapore.: Springer, 2022, pp. 455–463.
  187. W. R. Putri, S.-H. Liu, M. S. Aslam, Y.-H. Li, C.-C. Chang, and J.-C. Wang, “Self-Supervised Learning Framework toward State-of-the-Art Iris Image Segmentation,” Sensors, vol. 22, no. 6, p. 2133, Mar. 2022.
  188. R. Alinia Lat, S. Danishvar, H. Heravi, and M. Danishvar, “Boosting Iris Recognition by Margin-Based Loss Functions,” Algorithms, vol. 15, no. 4, p. 118, Mar. 2022.
  189. L. Yang, G. Yang, Y. Yin, and X. Xi, “Finger Vein Recognition With Anatomy Structure Analysis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 8, pp. 1892–1905, Aug. 2018.
  190. D. Huang, X. Zhu, Y. Wang, and D. Zhang, “Dorsal hand vein recognition via hierarchical combination of texture and shape clues,” Neurocomputing, vol. 214, pp. 815–828, Nov. 2016.
  191. G. L. Grinblat, L. C. Uzal, M. G. Larese, and P. M. Granitto, “Deep learning for plant identification using vein morphological patterns,” Computers and Electronics in Agriculture, vol. 127, pp. 418–424, Sep. 2016.
  192. D. T. Nguyen, H. S. Yoon, T. D. Pham, and K. R. Park, “Spoof Detection for Finger-Vein Recognition System Using NIR Camera,” Sensors, vol. 17, no. 10, p. 2261, Oct. 2017, doi: 10.3390/s17102261.
  193. H. Qin and M. A. El-Yacoubi, “Deep Representation-Based Feature Extraction and Recovering for Finger-Vein Verification,” IEEE Transactions on Information Forensics and Security, vol. 12, no. 8, pp. 1816–1829, Aug. 2017
  194. Hong, H. Gil, M. Beom Lee, and K. Ryoung Park, “Convolutional Neural Network-Based Finger-Vein Recognition Using NIR Image Sensors,” Sensors, vol. 17, no. 6, p. 1297, Jun. 2017.
  195. g Chen, Z. Wu, J. Zhang, P. Li, and F. Azmat, “A finger vein recognition algorithm based on deep learning,” International Journal of Embedded Systems, vol. 9, no. 3, p. 220, 2017, doi: 10.1504/ijes.2017.084690.
  196. J. Wang and G. Wang, “Hand-dorsa vein recognition with structure growing guided CNN,” Optik, vol. 149, pp. 469–477, Nov. 2017, doi: 10.1016/j.ijleo.2017.09.064.
  197. Y. Liu, J. Ling, Z. Liu, J. Shen, and C. Gao, “Finger vein secure biometric template generation based on deep learning,” Soft Computing, vol. 22, no. 7, pp. 2257–2265, Jan. 2017.
  198. Y. Fang, Q. Wu, and W. Kang, “A novel finger vein verification system based on two-stream convolutional network learning,” Neurocomputing, vol. 290, pp. 100–107, May 2018, doi: 10.1016/j.neucom.2018.02.042.
  199. J. Wang, K. Yang, Z. Pan, G. Wang, M. Li, and Y. Li, “Minutiae-Based Weighting Aggregation of Deep Convolutional Features for Vein Recognition,” IEEE Access, vol. 6, pp. 61640–61650, 2018, doi: 10.1109/access.2018.2876396.
  200. J. Wang, Z. Pan, G. Wang, M. Li, and Y. Li, “Spatial Pyramid Pooling of Selective Convolutional Features for Vein Recognition,” IEEE Access, vol. 6, pp. 28563–28572, 2018, doi: 10.1109/access.2018.2839720.
  201. R. Das, E. Piciucco, E. Maiorana, and P. Campisi, “Convolutional Neural Network for Finger-Vein-Based Biometric Identification,” IEEE Transactions on Information Forensics and Security, vol. 14, no. 2, pp. 360–373, Feb. 2019.
  202. W. Kim, J. M. Song, and K. R. Park, “Multimodal Biometric Recognition Based on Convolutional Neural Network by the Fusion of Finger-Vein and Finger Shape Using Near-Infrared (NIR) Camera Sensor,” Sensors, vol. 18, no. 7, p. 2296, Jul. 2018.
  203. C. Xie and A. Kumar, “Finger vein identification using Convolutional Neural Network and supervised discrete hashing,” Pattern Recognition Letters, vol. 119, pp. 148–156, Mar. 2019, doi: 10.1016/j.patrec.2017.12.001.
  204. L. Jinghui and P. Fang, “FVGNN: A novel GNN to finger vein recognition from limited training data,” in 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), May 2019, pp. 144–148.
  205. J. Zhang, Z. Lu, M. Li, and H. Wu, “GAN-Based Image Augmentation for Finger-Vein Biometric Recognition,” IEEE Access, vol. 7, pp. 183118–183132, 2019, doi: 10.1109/access.2019.2960411.
  206. B. Hou and R. Yan, “Convolutional Autoencoder Model for Finger-Vein Verification,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 5, pp. 2067–2074, May 2020.
  207. N. M. Kamaruddin and B. A. Rosdi, “A New Filter Generation Method in PCANet for Finger Vein Recognition,” IEEE Access, vol. 7, pp. 132966–132978, 2019, doi: 10.1109/access.2019.2941555.
  208. J. M. Song, W. Kim, and K. R. Park, “Finger-Vein Recognition Based on Deep DenseNet Using Composite Image,” IEEE Access, vol. 7, pp. 66845–66863, 2019, doi: 10.1109/access.2019.2918503.
  209. W. Yang, S. Wang, J. Hu, G. Zheng, J. Yang, and C. Valli, “Securing Deep Learning Based Edge Finger Vein Biometrics With Binary Decision Diagram,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4244–4253, Jul. 2019.
  210. Y. Lu, S. Xie, and S. Wu, “Exploring Competitive Features Using Deep Convolutional Neural Network for Finger Vein Recognition,” IEEE Access, vol. 7, pp. 35113–35123, 2019, doi: 10.1109/access.2019.2902429.
  211. W. Kang, H. Liu, W. Luo, and F. Deng, “Study of a Full-View 3D Finger Vein Verification Technique,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 1175–1189, 2020, doi: 10.1109/tifs.2019.2928507.
  212. D. Zhao, H. Ma, Z. Yang, J. Li, and W. Tian, “Finger vein recognition based on lightweight CNN combining center loss and dynamic regularization,” Infrared Physics & Technology, vol. 105, p. 103221, Mar. 2020, doi: 10.1016/j.infrared.2020.103221.
  213. W. Yang, W. Luo, W. Kang, Z. Huang, and Q. Wu, “FVRAS-Net: An Embedded Finger-Vein Recognition and AntiSpoofing System Using a Unified CNN,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 11, pp. 8690–8701, Nov. 2020.
  214. R. S. Kuzu, E. Maiorana, and P. Campisi, “Vein-Based Biometric Verification Using Densely-Connected Convolutional Autoencoder,” IEEE Signal Processing Letters, vol. 27, pp. 1869–1873, 2020, doi: 10.1109/lsp.2020.3030533.
  215. R. S. Kuzu, E. Piciucco, E. Maiorana, and P. Campisi, “On-the-Fly Finger-Vein-Based Biometric Recognition Using Deep Neural Networks,” IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2641–2654, 2020, doi: 10.1109/tifs.2020.2971144.
  216. I. Boucherit, M. O. Zmirli, H. Hentabli, and B. A. Rosdi, “Finger vein identification using deeply-fused Convolutional Neural Network,” Journal of King Saud University - Computer and Information Sciences, Apr. 2020, doi: 10.1016/j.jksuci.2020.04.002.
  217. Z. Jia-Yi, G. Jin Jin, M. Si-Ten, and L. Zhe-Ming, “Curvature gray feature decomposition based finger vein recognition with an improved convolutional neural network,” International Journal of Innovative Computing, Information and Control, vol. 16, no. 1, pp. 77–90, 2020.
  218. J. Choi, K. J. Noh, S. W. Cho, S. H. Nam, M. Owais, and K. R. Park, “Modified Conditional Generative Adversarial Network-Based Optical Blur Restoration for Finger-Vein Recognition,” IEEE Access, vol. 8, pp. 16281–16301, 2020, doi: 10.1109/access.2020.2967771.
  219. K. J. Noh, J. Choi, J. S. Hong, and K. R. Park, “Finger-Vein Recognition Based on Densely Connected Convolutional Network Using Score-Level Fusion With Shape and Texture Images,” IEEE Access, vol. 8, pp. 96748–96766, 2020, doi: 10.1109/access.2020.2996646.
  220. J. Zeng et al., “Finger Vein Verification Algorithm Based on Fully Convolutional Neural Network and Conditional Random Field,” IEEE Access, vol. 8, pp. 65402–65419, 2020, doi: 10.1109/access.2020.2984711
  221. A. Bilal, G. Sun, and S. Mazhar, “Finger-vein recognition using a novel enhancement method with convolutional neural network,” Journal of the Chinese Institute of Engineers, vol. 44, no. 5, pp. 407–417, May 2021.
  222. J. Shen et al., “Finger Vein Recognition Algorithm Based on Lightweight Deep Convolutional Neural Network,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–13, 2022, doi: 10.1109/tim.2021.3132332
  223. K. Wang, G. Chen, and H. Chu, “Finger Vein Recognition Based on Multi-Receptive Field Bilinear Convolutional Neural Network,” IEEE Signal Processing Letters, vol. 28, pp. 1590–1594, 2021, doi: 10.1109/lsp.2021.3094998.
  224. B. Hou and R. Yan, “ArcVein-Arccosine Center Loss for Finger Vein Verification,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021, doi: 10.1109/tim.2021.3062164.
  225. J. Huang, M. Tu, W. Yang, and W. Kang, “Joint Attention Network for Finger Vein Authentication,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11, 2021, doi: 10.1109/tim.2021.3109978.
  226. H. Ren, L. Sun, J. Guo, C. Han, and F. Wu, “Finger vein recognition system with template protection based on convolutional neural network,” Knowledge-Based Systems, vol. 227, p. 107159, Sep. 2021, doi: 10.1016/j.knosys.2021.107159.
  227. W.-F. Ou, L.-M. Po, C. Zhou, Y. A. U. Rehman, P.-F. Xian, and Y.-J. Zhang, “Fusion loss and inter-class data augmentation for deep finger vein feature learning,” Expert Systems with Applications, vol. 171, p. 114584, Jun. 2021, doi: 10.1016/j.eswa.2021.114584.
  228. J. Choi, J. S. Hong, M. Owais, S. G. Kim, and K. R. Park, “Restoration of Motion Blurred Image by Modified DeblurGAN for Enhancing the Accuracies of Finger-Vein Recognition,” Sensors, vol. 21, no. 14, p. 4635, Jul. 2021.
  229. C. Bhavya, T. Shikhar, J. Rupav, T. Archit, and S. Smriti, “Finger Vein Recognition Using Deep Learning,” in Proceedings of International Conference on Artificial Intelligence and Applications, Singapore: Springer, 2021, pp. 69–78.
  230. Z. Huang and C. Guo, “Robust Finger Vein Recognition Based on Deep CNN with Spatial Attention and Bias Field Correction,” International Journal on Artificial Intelligence Tools, vol. 30, no. 01, p. 2140005, Jan. 2021.
  231. K. Shaheed et al., “DS-CNN: A pre-trained Xception model based on depth-wise separable convolutional neural network for finger vein recognition,” Expert Systems with Applications, vol. 191, p. 116288, Apr. 2022, doi: 10.1016/j.eswa.2021.116288.
  232. D. Muthusamy and P. Rakkimuthu, “Trilateral Filterative Hermitian feature transformed deep perceptive fuzzy neural network for finger vein verification,” Expert Systems with Applications, vol. 196, p. 116678, Jun. 2022, doi: 10.1016/j.eswa.2022.116678.
  233. Y. Zhang, W. Li, L. Zhang, X. Ning, L. Sun, and Y. Lu, “AGCNN: Adaptive Gabor Convolutional Neural Networks with Receptive Fields for Vein Biometric Recognition,” Concurrency and Computation: Practice and Experience, vol. 34, no. 12, May 2022.
  234. P. Zhao, S. Zhao, L. Chen, W. Yang, and Q. Liao, “Exploiting Multi-Perspective Driven Hierarchical Content-Aware Network for Finger Vein Verification,” IEEE Transactions on Circuits and Systems for Video Technology, pp. 1–1, 2022, doi: 10.1109/tcsvt.2022.3188561.
  235. B. Hou and R. Yan, “Triplet-Classifier GAN for Finger-Vein Verification,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12, 2022, doi: 10.1109/tim.2022.3154834.
  236. J. Huang, W. Luo, W. Yang, A. Zheng, F. Lian, and W. Kang, “FVT: Finger Vein Transformer for Authentication,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–13, 2022, doi: 10.1109/tim.2022.3173276.
  237. “LFW Face Database : Main,” vis-www.cs.umass.edu. http://vis-www.cs.umass.edu/lfw/
  238. “Yale Face Database | vision.ucsd.edu,” vision.ucsd.edu. http://vision.ucsd.edu/content/yale-face-database
  239. A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: illumination cone models for face recognition under variable lighting and pose,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 643–660, Jun. 2001.
  240. “The CMU Multi-PIE Face Database,” www.cs.cmu.edu. http://www.cs.cmu.edu/afs/cs/project/PIE/Multi4Pie/
  241. R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker, “Multi-PIE,” Image and Vision Computing, vol. 28, no. 5, pp. 807–813, May 2010.
  242. W. Lior, H. Tal, and M. Itay, “Face recognition in unconstrained videos with matched background similarity,” in CVPR 2011, IEEE, 2011, pp. 529–534.
  243. “AR Face Database Webpage,” www2.ece.ohio-state.edu. https://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
  244. “- Biometrics Research Database Catalog,” tsapps.nist.gov. https://tsapps.nist.gov/BDbC/Search/Details/329
  245. R. Karl and T. Tamirat, “Morph: A longitudinal image database of normal adult age-progression,” in 7th international conference on automatic face and gesture recognition (FGR06), Apr. 2006, pp. 341–345.
  246. C. Qiong, S. Li, X. Weidi, P. Omkar M, and Z. Andrew, “Vggface2: A dataset for recognising faces across pose and age,” in 2018 13th IEEE international conference on automatic face \& gesture recognition (FG 2018), May 2018, pp. 67–74.
  247. K. Brendan F et al., “Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1931–1939.
  248. B. Sandipan, S. Walter, B. Kevin, and F. Patrick, “On hallucinating context and background pixels from a face mask using multi-scale gans,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 300–309.
  249. E. Eidinger, R. Enbar, and T. Hassner, “Age and Gender Estimation of Unfiltered Faces,” IEEE Transactions on Information Forensics and Security, vol. 9, no. 12, pp. 2170–2179, Dec. 2014, doi: 10.1109/tifs.2014.2359646.
  250. G. Yandong, Z. Lei, H. Yuxiao, H. Xiaodong, and G. Jianfeng, “Ms-celeb-1m: A dataset and benchmark for large-scale face recognition,” European conference on computer vision, pp. 87–102, 2016.
  251. L. Ziwei, L. Ping, W. Xiaogang, and T. Xiaoou, “Deep learning face attributes in the wild,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 3730–3738.
  252. K. Shlizerman Ira, S. Steven M, M. Daniel, and B. Evan, “The megaface benchmark: 1 million faces for recognition at scale,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 4873–4882.
  253. B. Thomee et al., “YFCC100M,” Communications of the ACM, vol. 59, no. 2, pp. 64–73, Jan. 2016, doi: 10.1145/2812802.
  254. Y. Yilong, L. Lili, and S. Xiwei, “SDUMLA-HMT: a multimodal biometric database,” in Chinese Conference on Biometric Recognition, Dec. 2011, pp. 260–268.
  255. M. Ghazi Mostafa and K. Ekenel, Hazim, “A comprehensive analysis of deep learning based representation for face recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2016, pp. 34–41.
  256. “ORL - V7 Open Datasets,” www.v7labs.com. https://www.v7labs.com/open-datasets/orl (accessed Oct. 08, 2022).
  257. M. Dario, M. Davide, C. Raffaele, W. James L, and J. Anil K, “FVC2002: Second fingerprint verification competition,” in 2002 International Conference on Pattern Recognition, 2002, pp. 811–814.
  258. “Ajay Kumar, The Hong Kong Polytechnic University, Hong Kong,” www4.comp.polyu.edu.hk. http://www4.comp.polyu.edu.hk/~csajaykr/database.php (accessed Oct. 10, 2022).
  259. “BIT,” biometrics.idealtest.org. http://biometrics.idealtest.org/dbDetailForUser.do?id=7
  260. G. Michael D, IST special database 27: Fingerprint minutiae from latent and matching tenprint images. US Department of Commerce, National Institute of Standards and Technology, 2000.
  261. “3-D Face Database | Biometrics and Identification Innovation Center | West Virginia University,” biic.wvu.edu. https://biic.wvu.edu/data-sets/3-d-face-databset (accessed Oct. 08, 2022).
  262. “Papers with Code - Recognition Oriented Iris Image Quality Assessment in the Feature Space,” paperswithcode.com. https://paperswithcode.com/paper/recognition-oriented-iris-image-quality
  263. K. B. Raja, R. Raghavendra, V. K. Vemuri, and C. Busch, “Smartphone based visible iris recognition using deep sparse filtering,” Pattern Recognition Letters, vol. 57, pp. 33–42, May 2015, doi: 10.1016/j.patrec.2014.09.006.
  264. “UBIRIS,” iris.di.ubi.pt. http://iris.di.ubi.pt/ (accessed Oct. 08, 2022).
  265. M. De Marsico, M. Nappi, D. Riccio, and H. Wechsler, “Mobile Iris Challenge Evaluation (MICHE)-I, biometric iris dataset and protocols,” Pattern Recognition Letters, vol. 57, pp. 17–23, May 2015, doi: 10.1016/j.patrec.2015.02.009.
  266. “IIT Delhi Iris Database,” Polyu.edu.hk, 2021. https://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.hm
  267. J. Peter A, L.-M. Paulo, S. Nadezhda, H. Fang, and S. S, “Quality in face and iris research ensemble (Q-FIRE),” in 2010 Fourth IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS), 2010, pp. 1–6.
  268. “Notre Dame CVRL,” cvrl.nd.edu. https://cvrl.nd.edu/projects/data/ (accessed Oct. 08, 2022).
  269. “Andy's Iris Recognition,” andyzeng.github.io. http://andyzeng.github.io/irisrecognition (accessed Oct. 08, 2022).
  270. W. Yang, X. Huang, F. Zhou, and Q. Liao, “Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion,” Information Sciences, vol. 268, pp. 20–32, Jun. 2014.
  271. “- Biometrics Research Database Catalog,” tsapps.nist.gov. https://tsapps.nist.gov/BDbC/Search/Details/420 (accessed Oct. 08, 2022).
  272. L. Yu, X. Shan Juan, Y. Sook, W. Zhihui, and P. Dong Sun, “An available database for the research of finger vein recognition,” in 2013 6th International congress on image and signal processing (CISP), 2013, pp. 410–415.
  273. “Multimedia Signal Processing and Security Lab,” www.wavelab.at. https://www.wavelab.at/sources/PLUS-OpenVein/ (accessed Oct. 08, 2022).
  274. A. Kumar and Yingbo Zhou, “Human Identification Using Finger Images,” IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 2228–2244, Apr. 2012, doi: 10.1109/tip.2011. Information Security, Chaotic Theories, and participated in conference sponsored by IOP and has a published work bout securing medical images within chaotic-based cryptography approach in 2018.
Language: English
Page range: 117 - 157
Submitted on: May 23, 2024
Accepted on: Jun 7, 2024
Published on: Jun 15, 2024
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 Saif Mohanad Kadhim, Johnny Koh Siaw Paw, Yaw Chong Tak, Shahad Ameen, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.