References
- Ahmed, M., & Mahmood, A. N. (2023). A survey on machine learning-based intrusion detection techniques for IoT. Journal of Computing and Security, 29(1), 1–20.
https://doi.org/10.1016/j.jocs.2023.101951. - Arshad, S., & Zubair, A. (2022). Hybrid deep learning models for efficient intrusion detection in IoT networks. Journal of Network and Computer Applications, 144, 102795.
https://doi.org/10.1016/j.jnca.2021.102795. - Al-Maadeed, S., & Khamis, A. (2022). Enhancing security in IoT networks using hybrid machine learning algorithms. Journal of Internet of Things and Cyber-Physical Systems, 10(3), 104–113.
https://doi.org/10.1007/s42152-022-00260-0. - Yadav, A., & Sharma, S. (2023). A hybrid deep learning model for intrusion detection in IoT networks: A comparative study. Future Generation Computer Systems, 118, 85–96.
https://doi.org/10.1016/j.future.2021.10.041. - Li, S., & Zhang, Z. (2023). A novel hybrid intrusion detection approach for IoT systems using deep learning and feature selection. Journal of Sensors, 23(8), 2769.
https://doi.org/10.3390/s23082769. - Zhang, H., & Zhang, Y. (2023). Hybrid feature selection and deep learning for intrusion detection in IoT networks. Computers, Materials & Continua, 71(2), 2199–2214.
https://doi.org/10.32604/cmc.2023.017114. - Rani, R., & Meenakshi, S. (2022). An IoT-based hybrid intrusion detection system using ensemble machine learning models. Computers & Security, 108, 102384.
https://doi.org/10.1016/j.cose.2021.102384. - Hasan, M., & Kaur, M. (2023). A hybrid deep learning framework for efficient anomaly detection in IoT networks. Artificial Intelligence in Medicine, 138, 102007.
https://doi.org/10.1016/j.artmed.2023.102007. - Liu, Y., & Jin, Y. (2022). IoT security enhancement using hybrid deep neural network-based intrusion detection. International Journal of Security and Networks, 17(5), 349–360.
https://doi.org/10.1504/IJSN.2022.120399. - Liu, S., & Wang, X. (2022). A hybrid deep learning approach to intrusion detection in IoT networks. International Journal of Computer Science and Information Security, 20(3), 124–133.
- Shahid, Usama & Hussain, Muhammad Zunnurain & Hasan, Muhammad Zulkifl & Haider, Ali & Ali, Jibran & Altaf, Jawad. (2024). Hybrid Intrusion Detection System for RPL IoT Networks Using Machine Learning and Deep Learning. IEEE Access. PP. 1–1. 10.1109/ACCESS.2024.3442529.
- Yaras, S., & Dener, M. (2024). IoT-Based Intrusion Detection System Using New Hybrid Deep Learning Algorithm. Electronics, 13(6), 1053.
https://doi.org/10.3390/electronics13061053. - Sajid, M., Malik, K.R., Almogren, A. et al. Enhancing intrusion detection: a hybrid machine and deep learning approach. J Cloud Comp 13, 123 (2024).
https://doi.org/10.1186/s13677-024-00685-x. - Almotairi, A., Atawneh, S., Khashan, O. A., & Khafajah, N. M. (2024). Enhancing intrusion detection in IoT networks using machine learning-based feature selection and ensemble models. Systems Science & Control Engineering, 12(1).
https://doi.org/10.1080/21642583.2024.2321381. - Walling, S., & Lodh, S. (2024). Network intrusion detection system for IoT security using machine learning and statistical-based hybrid feature selection. Security and Privacy, e429.
https://doi.org/10.1002/spy2.429. - Meliboyev, A. (2024). IoT network intrusion detection system using machine learning techniques. Qoqon Universitesi Xabarnomasi, 11, 112–115.
https://doi.org/10.54613/ku.v11i11.972. - Al Sawafi, Y., Touzene, A., & Hedjam, R. (2023). Hybrid Deep Learning-Based Intrusion Detection System for RPL IoT Networks. Journal of Sensor and Actuator Networks, 12(2), 21.
https://doi.org/10.3390/jsan12020021. - Awajan, A. A Novel Deep Learning-Based Intrusion Detection System for IoT Networks. Computers 2023, 12, 34.
https://doi.org/10.3390/computers12020034. - Singh, A., Chatterjee, K. & Satapathy, S.C. An edge based hybrid intrusion detection framework for mobile edge computing. Complex Intell. Syst. 8, 3719–3746 (2022).
https://doi.org/10.1007/s40747-021-00498-4. - Smys, Smys & Basar, Dr & Wang, Dr. (2020). Hybrid Intrusion Detection System for Internet of Things (IoT). Journal of ISMAC. 2. 190–199.
https://doi.org/10.36548/jismac.2020.4.002. - Kharel, P., & Bhattarai, P. (2022). Hybrid feature selection and classification for intrusion detection in IoT networks. Information Sciences, 603, 46–59.
https://doi.org/10.1016/j.ins.2022.04.016. - Ahmed, S., & Raza, M. (2023). Secure IoT network design using hybrid machine learning-based intrusion detection. Computer Networks, 212, 108196.
https://doi.org/10.1016/j.comnet.2023.108196. - Kaur, P., & Sharma, D. (2023). Deep learning-based hybrid intrusion detection model for secure IoT communication. Journal of Network Security, 33(5), 94–105.
https://doi.org/10.1016/j.jns.2023.01.002. - Singh, G., & Kumar, S. (2023). A hybrid IoT intrusion detection system using genetic algorithm and machine learning classifiers. Journal of Intelligent Systems, 32(4), 553–567.
https://doi.org/10.1515/jisys-2023-0426. - Kumar, S., & Saha, S. (2022). Hybrid model for intrusion detection in IoT networks using a combination of deep learning and random forests. Journal of Machine Learning Research, 23(1), 54–67.
- Dinesh, P., & Reddy, S. (2023). Anomaly-based intrusion detection using hybrid machine learning for IoT. Security and Privacy, 6(2), e433.
https://doi.org/10.1002/spy2.433. - Wang, C., & Yao, L. (2022). A hybrid IoT intrusion detection framework using convolutional neural networks and long short-term memory networks. IEEE Transactions on Industrial Informatics, 18(7), 4525–4532.
https://doi.org/10.1109/TII.2022.3156572. - Khalil, M., & Gohar, M. (2022). Hybrid deep neural network-based intrusion detection system for IoT security. Computers & Security, 111, 102420.
https://doi.org/10.1016/j.cose.2021.102420. - Hossain, M. I., & Karim, R. (2023). A novel hybrid approach for intrusion detection in IoT using deep learning and feature selection. Journal of Cyber Security Technology, 7(2), 87–102.
https://doi.org/10.1080/23742917.2023.1911781. - Thakur, R., & Arora, A. (2023). Hybrid feature selection and deep learning for intrusion detection in Internet of Things. Applied Soft Computing, 119, 108521.
https://doi.org/10.1016/j.asoc.2022.108521.