Have a personal or library account? Click to login
Development of Hybrid Intrusion Detection Systems for IoT Enabled Devices Utilizing Resource Constraint Learning Frameworks Cover

Development of Hybrid Intrusion Detection Systems for IoT Enabled Devices Utilizing Resource Constraint Learning Frameworks

Open Access
|Jun 2024

References

  1. Ahmed, M., & Mahmood, A. N. (2023). A survey on machine learning-based intrusion detection techniques for IoT. Journal of Computing and Security, 29(1), 1–20. https://doi.org/10.1016/j.jocs.2023.101951.
  2. Arshad, S., & Zubair, A. (2022). Hybrid deep learning models for efficient intrusion detection in IoT networks. Journal of Network and Computer Applications, 144, 102795. https://doi.org/10.1016/j.jnca.2021.102795.
  3. Al-Maadeed, S., & Khamis, A. (2022). Enhancing security in IoT networks using hybrid machine learning algorithms. Journal of Internet of Things and Cyber-Physical Systems, 10(3), 104–113. https://doi.org/10.1007/s42152-022-00260-0.
  4. Yadav, A., & Sharma, S. (2023). A hybrid deep learning model for intrusion detection in IoT networks: A comparative study. Future Generation Computer Systems, 118, 85–96. https://doi.org/10.1016/j.future.2021.10.041.
  5. Li, S., & Zhang, Z. (2023). A novel hybrid intrusion detection approach for IoT systems using deep learning and feature selection. Journal of Sensors, 23(8), 2769. https://doi.org/10.3390/s23082769.
  6. Zhang, H., & Zhang, Y. (2023). Hybrid feature selection and deep learning for intrusion detection in IoT networks. Computers, Materials & Continua, 71(2), 2199–2214. https://doi.org/10.32604/cmc.2023.017114.
  7. Rani, R., & Meenakshi, S. (2022). An IoT-based hybrid intrusion detection system using ensemble machine learning models. Computers & Security, 108, 102384. https://doi.org/10.1016/j.cose.2021.102384.
  8. Hasan, M., & Kaur, M. (2023). A hybrid deep learning framework for efficient anomaly detection in IoT networks. Artificial Intelligence in Medicine, 138, 102007. https://doi.org/10.1016/j.artmed.2023.102007.
  9. Liu, Y., & Jin, Y. (2022). IoT security enhancement using hybrid deep neural network-based intrusion detection. International Journal of Security and Networks, 17(5), 349–360. https://doi.org/10.1504/IJSN.2022.120399.
  10. Liu, S., & Wang, X. (2022). A hybrid deep learning approach to intrusion detection in IoT networks. International Journal of Computer Science and Information Security, 20(3), 124–133.
  11. Shahid, Usama & Hussain, Muhammad Zunnurain & Hasan, Muhammad Zulkifl & Haider, Ali & Ali, Jibran & Altaf, Jawad. (2024). Hybrid Intrusion Detection System for RPL IoT Networks Using Machine Learning and Deep Learning. IEEE Access. PP. 1–1. 10.1109/ACCESS.2024.3442529.
  12. Yaras, S., & Dener, M. (2024). IoT-Based Intrusion Detection System Using New Hybrid Deep Learning Algorithm. Electronics, 13(6), 1053. https://doi.org/10.3390/electronics13061053.
  13. Sajid, M., Malik, K.R., Almogren, A. et al. Enhancing intrusion detection: a hybrid machine and deep learning approach. J Cloud Comp 13, 123 (2024). https://doi.org/10.1186/s13677-024-00685-x.
  14. Almotairi, A., Atawneh, S., Khashan, O. A., & Khafajah, N. M. (2024). Enhancing intrusion detection in IoT networks using machine learning-based feature selection and ensemble models. Systems Science & Control Engineering, 12(1). https://doi.org/10.1080/21642583.2024.2321381.
  15. Walling, S., & Lodh, S. (2024). Network intrusion detection system for IoT security using machine learning and statistical-based hybrid feature selection. Security and Privacy, e429. https://doi.org/10.1002/spy2.429.
  16. Meliboyev, A. (2024). IoT network intrusion detection system using machine learning techniques. Qoqon Universitesi Xabarnomasi, 11, 112–115. https://doi.org/10.54613/ku.v11i11.972.
  17. Al Sawafi, Y., Touzene, A., & Hedjam, R. (2023). Hybrid Deep Learning-Based Intrusion Detection System for RPL IoT Networks. Journal of Sensor and Actuator Networks, 12(2), 21. https://doi.org/10.3390/jsan12020021.
  18. Awajan, A. A Novel Deep Learning-Based Intrusion Detection System for IoT Networks. Computers 2023, 12, 34. https://doi.org/10.3390/computers12020034.
  19. Singh, A., Chatterjee, K. & Satapathy, S.C. An edge based hybrid intrusion detection framework for mobile edge computing. Complex Intell. Syst. 8, 3719–3746 (2022). https://doi.org/10.1007/s40747-021-00498-4.
  20. Smys, Smys & Basar, Dr & Wang, Dr. (2020). Hybrid Intrusion Detection System for Internet of Things (IoT). Journal of ISMAC. 2. 190–199. https://doi.org/10.36548/jismac.2020.4.002.
  21. Kharel, P., & Bhattarai, P. (2022). Hybrid feature selection and classification for intrusion detection in IoT networks. Information Sciences, 603, 46–59. https://doi.org/10.1016/j.ins.2022.04.016.
  22. Ahmed, S., & Raza, M. (2023). Secure IoT network design using hybrid machine learning-based intrusion detection. Computer Networks, 212, 108196. https://doi.org/10.1016/j.comnet.2023.108196.
  23. Kaur, P., & Sharma, D. (2023). Deep learning-based hybrid intrusion detection model for secure IoT communication. Journal of Network Security, 33(5), 94–105. https://doi.org/10.1016/j.jns.2023.01.002.
  24. Singh, G., & Kumar, S. (2023). A hybrid IoT intrusion detection system using genetic algorithm and machine learning classifiers. Journal of Intelligent Systems, 32(4), 553–567. https://doi.org/10.1515/jisys-2023-0426.
  25. Kumar, S., & Saha, S. (2022). Hybrid model for intrusion detection in IoT networks using a combination of deep learning and random forests. Journal of Machine Learning Research, 23(1), 54–67.
  26. Dinesh, P., & Reddy, S. (2023). Anomaly-based intrusion detection using hybrid machine learning for IoT. Security and Privacy, 6(2), e433. https://doi.org/10.1002/spy2.433.
  27. Wang, C., & Yao, L. (2022). A hybrid IoT intrusion detection framework using convolutional neural networks and long short-term memory networks. IEEE Transactions on Industrial Informatics, 18(7), 4525–4532. https://doi.org/10.1109/TII.2022.3156572.
  28. Khalil, M., & Gohar, M. (2022). Hybrid deep neural network-based intrusion detection system for IoT security. Computers & Security, 111, 102420. https://doi.org/10.1016/j.cose.2021.102420.
  29. Hossain, M. I., & Karim, R. (2023). A novel hybrid approach for intrusion detection in IoT using deep learning and feature selection. Journal of Cyber Security Technology, 7(2), 87–102. https://doi.org/10.1080/23742917.2023.1911781.
  30. Thakur, R., & Arora, A. (2023). Hybrid feature selection and deep learning for intrusion detection in Internet of Things. Applied Soft Computing, 119, 108521. https://doi.org/10.1016/j.asoc.2022.108521.
Language: English
Page range: 60 - 76
Submitted on: Feb 11, 2024
Accepted on: May 1, 2021
Published on: Jun 15, 2024
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2024 P. Rachana, Mamatha Talakoti, V. Surya Narayana Reddy, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.