Have a personal or library account? Click to login
Modelling of African Vulture Optimization Algorithm with Deep Learning-based Object Classification for Intelligent Manufacturing Systems Cover

Modelling of African Vulture Optimization Algorithm with Deep Learning-based Object Classification for Intelligent Manufacturing Systems

Open Access
|Dec 2023

References

  1. Zhou, X., Xu, X., Liang, W., Zeng, Z., Shimizu, S., Yang, L.T., & Jin, Q. (2021). Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems. IEEE Transactions on Industrial Informatics, 18(2), 1377-1386.
  2. Blömeke, S., Rickert, J., Mennenga, M., Thiede, S., Spengler, T.S., & Herrmann, C. (2020). Recycling 4.0–Mapping smart manufacturing solutions to remanufacturing and recycling operations. Procedia CIRP, 90, 600-605.
  3. Shaikh, A., Shinde, S., Rondhe, M., & Chinchanikar, S. (2022). Machine Learning Techniques for Smart Manufacturing: A Comprehensive Review. Industry 4.0 and Advanced Manufacturing: Proceedings of I-4 AM 2022, 127-137.
  4. Andhy Panca Saputra, K. (2021). Waste Object Detection and Classification using Deep Learning Algorithms: YOLOv4 and YOLOv4-tiny. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 1666-1677.
  5. Verma, V., Gupta, D., Gupta, S., Uppal, M., Anand, D., Ortega-Mansilla, A., Alharithi, F.S., Almotiri, J., & Goyal, N. (2022). A deep learning-based intelligent garbage detection system using an unmanned aerial vehicle. Symmetry, 14(5), 960.
  6. Rahman, M.W., Islam, R., Hasan, A., Bithi, N.I., Hasan, M.M., & Rahman, M.M. (2022). Intelligent waste management system using deep learning with IoT. Journal of King Saud University-Computer and Information Sciences, 34(5), 2072-2087.
  7. Nguyen, X.C., Nguyen, T.T.H., La, D.D., Kumar, G., Rene, E.R., Nguyen, D.D., Chang, S.W., Chung, W.J., Nguyen, X.H., & Nguyen, V.K. (2021). Development of machine learning-based models to forecast solid waste generation in residential areas: A case study from Vietnam. Resources, Conservation and Recycling, 167, 105381.
  8. Sannigrahi, S., Basu, B., Basu, A.S., & Pilla, F. (2022). Development of automated marine floating plastic detection system using Sentinel-2 imagery and machine learning models. Marine Pollution Bulletin, 178, 113527.
  9. Yan, B., Liang, R., Li, B., Tao, J., Chen, G., Cheng, Z., Zhu, Z., & Li, X. (2021). Fast identification and characterization of residual wastes via laser-induced breakdown spectroscopy and machine learning. Resources, Conservation and Recycling, 174, 105851.
  10. Zhang, Q., Yang, Q., Zhang, X., Bao, Q., Su, J., & Liu, X. (2021). Waste image classification based on transfer learning and convolutional neural network. Waste Management, 135, 150-157.
  11. Alsubaei, F.S., Al-Wesabi, F.N., & Hilal, A.M. (2022). Deep learning-based small object detection and classification model for garbage waste management in smart cities and iot environment. Applied Sciences, 12(5), 2281.
  12. Wang, C., Qin, J., Qu, C., Ran, X., Liu, C., & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management, 135, 20-29.
  13. Malik, M., Sharma, S., Uddin, M., Chen, C.L., Wu, C.M., Soni, P., & Chaudhary, S. (2022). Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models. Sustainability, 14(12), 7222.
  14. Agbehadji, I.E., Abayomi, A., Bui, K.H.N., Millham, R.C., & Freeman, E. (2022). Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin. Sensors, 22(16), 6176.
  15. Khan, R., Kumar, S., Srivastava, A.K., Dhingra, N., Gupta, M., Bhati, N., & Kumari, P. (2021). Machine learning and IoT-based waste management model. Computational Intelligence and Neuroscience, 2021.
  16. Abu-Qdais, H., Shatnawi, N., & Esra’a, A.A. (2023). Intelligent solid waste classification system using a combination of image processing and machine learning models.
  17. Cheng, Y., Ekici, E., Yildiz, G., Yang, Y., Coward, B., & Wang, J. (2023). Applied machine learning for the prediction of waste plastic pyrolysis towards valuable fuel and chemicals production. Journal of Analytical and Applied Pyrolysis, 105857.
  18. Li, Y., Dua, A., & Ren, F. (2020). Lightweight retinanet for object detection on edge devices. In IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, pp. 1–6.
  19. Al-Dhaifallah, M. (2023). Analytical solutions using special trans functions theory for current–voltage expressions of perovskite solar cells and their approximate equivalent circuits. Ain Shams Engineering Journal, 102225.
  20. Zheng, H., Lin, F., Feng, X., & Chen, Y. (2020). A hybrid deep learning model with attention-based conv-LSTM networks for short-term input data prediction. IEEE.
Language: English
Page range: 62 - 83
Submitted on: Sep 5, 2023
Accepted on: Oct 22, 2023
Published on: Dec 15, 2023
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Ameer N. Onaizah, Mohanad R. Aljanabi, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.