References
- Zhou, X., Xu, X., Liang, W., Zeng, Z., Shimizu, S., Yang, L.T., & Jin, Q. (2021). Intelligent small object detection for digital twin in smart manufacturing with industrial cyber-physical systems. IEEE Transactions on Industrial Informatics, 18(2), 1377-1386.
- Blömeke, S., Rickert, J., Mennenga, M., Thiede, S., Spengler, T.S., & Herrmann, C. (2020). Recycling 4.0–Mapping smart manufacturing solutions to remanufacturing and recycling operations. Procedia CIRP, 90, 600-605.
- Shaikh, A., Shinde, S., Rondhe, M., & Chinchanikar, S. (2022). Machine Learning Techniques for Smart Manufacturing: A Comprehensive Review. Industry 4.0 and Advanced Manufacturing: Proceedings of I-4 AM 2022, 127-137.
- Andhy Panca Saputra, K. (2021). Waste Object Detection and Classification using Deep Learning Algorithms: YOLOv4 and YOLOv4-tiny. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 1666-1677.
- Verma, V., Gupta, D., Gupta, S., Uppal, M., Anand, D., Ortega-Mansilla, A., Alharithi, F.S., Almotiri, J., & Goyal, N. (2022). A deep learning-based intelligent garbage detection system using an unmanned aerial vehicle. Symmetry, 14(5), 960.
- Rahman, M.W., Islam, R., Hasan, A., Bithi, N.I., Hasan, M.M., & Rahman, M.M. (2022). Intelligent waste management system using deep learning with IoT. Journal of King Saud University-Computer and Information Sciences, 34(5), 2072-2087.
- Nguyen, X.C., Nguyen, T.T.H., La, D.D., Kumar, G., Rene, E.R., Nguyen, D.D., Chang, S.W., Chung, W.J., Nguyen, X.H., & Nguyen, V.K. (2021). Development of machine learning-based models to forecast solid waste generation in residential areas: A case study from Vietnam. Resources, Conservation and Recycling, 167, 105381.
- Sannigrahi, S., Basu, B., Basu, A.S., & Pilla, F. (2022). Development of automated marine floating plastic detection system using Sentinel-2 imagery and machine learning models. Marine Pollution Bulletin, 178, 113527.
- Yan, B., Liang, R., Li, B., Tao, J., Chen, G., Cheng, Z., Zhu, Z., & Li, X. (2021). Fast identification and characterization of residual wastes via laser-induced breakdown spectroscopy and machine learning. Resources, Conservation and Recycling, 174, 105851.
- Zhang, Q., Yang, Q., Zhang, X., Bao, Q., Su, J., & Liu, X. (2021). Waste image classification based on transfer learning and convolutional neural network. Waste Management, 135, 150-157.
- Alsubaei, F.S., Al-Wesabi, F.N., & Hilal, A.M. (2022). Deep learning-based small object detection and classification model for garbage waste management in smart cities and iot environment. Applied Sciences, 12(5), 2281.
- Wang, C., Qin, J., Qu, C., Ran, X., Liu, C., & Chen, B. (2021). A smart municipal waste management system based on deep-learning and Internet of Things. Waste Management, 135, 20-29.
- Malik, M., Sharma, S., Uddin, M., Chen, C.L., Wu, C.M., Soni, P., & Chaudhary, S. (2022). Waste Classification for Sustainable Development Using Image Recognition with Deep Learning Neural Network Models. Sustainability, 14(12), 7222.
- Agbehadji, I.E., Abayomi, A., Bui, K.H.N., Millham, R.C., & Freeman, E. (2022). Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin. Sensors, 22(16), 6176.
- Khan, R., Kumar, S., Srivastava, A.K., Dhingra, N., Gupta, M., Bhati, N., & Kumari, P. (2021). Machine learning and IoT-based waste management model. Computational Intelligence and Neuroscience, 2021.
- Abu-Qdais, H., Shatnawi, N., & Esra’a, A.A. (2023). Intelligent solid waste classification system using a combination of image processing and machine learning models.
- Cheng, Y., Ekici, E., Yildiz, G., Yang, Y., Coward, B., & Wang, J. (2023). Applied machine learning for the prediction of waste plastic pyrolysis towards valuable fuel and chemicals production. Journal of Analytical and Applied Pyrolysis, 105857.
- Li, Y., Dua, A., & Ren, F. (2020). Lightweight retinanet for object detection on edge devices. In IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, pp. 1–6.
- Al-Dhaifallah, M. (2023). Analytical solutions using special trans functions theory for current–voltage expressions of perovskite solar cells and their approximate equivalent circuits. Ain Shams Engineering Journal, 102225.
- Zheng, H., Lin, F., Feng, X., & Chen, Y. (2020). A hybrid deep learning model with attention-based conv-LSTM networks for short-term input data prediction. IEEE.