References
- Mall, P. K., Narayan, V., Pramanik, S., Srivastava, S., Faiz, M., Sriramulu, S., & Kumar, M. N. (2023). FuzzyNet-Based Modelling Smart Traffic System in Smart Cities Using Deep Learning Models. In Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (pp. 76-95). IGI Global.
- Hameed, A., Violos, J., & Leivadeas, A. (2022). A deep learning approach for IoT traffic multi-classification in a smart-city scenario. IEEE Access, 10, 21193-21210.
- Ramana, K., Srivastava, G., Kumar, M. R., Gadekallu, T. R., Lin, J. C. W., Alazab, M., & Iwendi, C. (2023). A Vision Transformer Approach for Traffic Congestion Prediction in Urban Areas. IEEE Transactions on Intelligent Transportation Systems.
- Chen, G., & Zhang, J. (2022). Applying Artificial Intelligence and Deep Belief Network to predict traffic congestion evacuation performance in smart cities. Applied Soft Computing, 121, 108692.
- Khan, N. U., Shah, M. A., Maple, C., Ahmed, E., & Asghar, N. (2022). Traffic flow prediction: an intelligent scheme for forecasting traffic flow using air pollution data in smart cities with bagging ensemble. Sustainability, 14(7), 4164.
- AlZoman, R. M., & Alenazi, M. J. (2021). A comparative study of traffic classification techniques for smart city networks. Sensors, 21(14), 4677.
- Zhou, S., Wei, C., Song, C., Pan, X., Chang, W., & Yang, L. (2022). Short-term traffic flow prediction of the smart city using 5G internet of vehicles based on edge computing. IEEE Transactions on Intelligent Transportation Systems.
- Gobezie, A., & Fufa, M. S. (2020). Machine learning and deep learning models for traffic flow prediction: A survey.
- Razali, N. A. M., Shamsaimon, N., Ishak, K. K., Ramli, S., Amran, M. F. M., & Sukardi, S. (2021). Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning. Journal of Big Data, 8(1), 1-25.
- Navarro-Espinoza, A., López-Bonilla, O. R., García-Guerrero, E. E., Tlelo-Cuautle, E., López-Mancilla, D., Hernández-Mejía, C., & Inzunza-González, E. (2022). Traffic flow prediction for smart traffic lights using machine learning algorithms. Technologies, 10(1), 5.
- Qi, T., Chen, L., Li, G., Li, Y., & Wang, C. (2023). FedAGCN: A traffic flow prediction framework based on federated learning and Asynchronous Graph Convolutional Network. Applied Soft Computing, 138, 110175.
- Djenouri, Y., Belhadi, A., Srivastava, G., & Lin, J. C. W. (2023). Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Future Generation Computer Systems, 139, 100-108.
- Saleem, M., Abbas, S., Ghazal, T. M., Khan, M. A., Sahawneh, N., & Ahmad, M. (2022). Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egyptian Informatics Journal, 23(3), 417-426.
- Dai, F., Huang, P., Mo, Q., Xu, X., Bilal, M., & Song, H. (2022). ST-InNet: Deep Spatio-Temporal Inception Networks for Traffic Flow Prediction in Smart Cities. IEEE Transactions on Intelligent Transportation Systems, 23(10), 19782-19794.
- Hassan, M., Kanwal, A., Jarrah, M., Pradhan, M., Hussain, A., & Mago, B. (2022, February). Smart City Intelligent Traffic Control for Connected Road Junction Congestion Awareness with Deep Extreme Learning Machine. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-4). IEEE.
- Vijayalakshmi, B., Ramar, K., Jhanjhi, N. Z., Verma, S., Kaliappan, M., Vijayalakshmi, K., ... & Ghosh, U. (2021). An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city. International Journal of Communication Systems, 34(3), e4609.
- Joseph, L. L., Goel, P., Jain, A., Rajyalakshmi, K., Gulati, K., & Singh, P. (2021, October). A novel hybrid deep learning algorithm for smart city traffic congestion predictions. In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 561-565). IEEE
- Awan, F. M., Minerva, R., & Crespi, N. (2021). Using noise pollution data for traffic prediction in smart cities: experiments based on LSTM recurrent neural networks. IEEE Sensors Journal, 21(18), 20722-20729.
- Qaisar, S. M., Khan, S. I., Srinivasan, K., & Krichen, M. (2023). Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition. Journal of King Saud University-Computer and Information Sciences, 35(1), 26-37.
- Henry, A., Gautam, S., Khanna, S., Rabie, K., Shongwe, T., Bhattacharya, P., Sharma, B., & Chowdhury, S. (2023). Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System. Sensors, 23(2), 890.
- Wang, H., Zhang, C., & Wu, H. (2023). Shear Capacity Prediction Model of Deep Beam Based on New Hybrid Intelligent Algorithm. Buildings, 13(6), 1395.
- https://www.kaggle.com/datasets/arashnic/road-trafic-dataset?select=region_traffic.csv