Have a personal or library account? Click to login
Intelligent Traffic Congestion Control Using Black Widow Optimization with Hybrid Deep Learning on Smart City Environment Cover

Intelligent Traffic Congestion Control Using Black Widow Optimization with Hybrid Deep Learning on Smart City Environment

Open Access
|Dec 2023

References

  1. Mall, P. K., Narayan, V., Pramanik, S., Srivastava, S., Faiz, M., Sriramulu, S., & Kumar, M. N. (2023). FuzzyNet-Based Modelling Smart Traffic System in Smart Cities Using Deep Learning Models. In Handbook of Research on Data-Driven Mathematical Modeling in Smart Cities (pp. 76-95). IGI Global.
  2. Hameed, A., Violos, J., & Leivadeas, A. (2022). A deep learning approach for IoT traffic multi-classification in a smart-city scenario. IEEE Access, 10, 21193-21210.
  3. Ramana, K., Srivastava, G., Kumar, M. R., Gadekallu, T. R., Lin, J. C. W., Alazab, M., & Iwendi, C. (2023). A Vision Transformer Approach for Traffic Congestion Prediction in Urban Areas. IEEE Transactions on Intelligent Transportation Systems.
  4. Chen, G., & Zhang, J. (2022). Applying Artificial Intelligence and Deep Belief Network to predict traffic congestion evacuation performance in smart cities. Applied Soft Computing, 121, 108692.
  5. Khan, N. U., Shah, M. A., Maple, C., Ahmed, E., & Asghar, N. (2022). Traffic flow prediction: an intelligent scheme for forecasting traffic flow using air pollution data in smart cities with bagging ensemble. Sustainability, 14(7), 4164.
  6. AlZoman, R. M., & Alenazi, M. J. (2021). A comparative study of traffic classification techniques for smart city networks. Sensors, 21(14), 4677.
  7. Zhou, S., Wei, C., Song, C., Pan, X., Chang, W., & Yang, L. (2022). Short-term traffic flow prediction of the smart city using 5G internet of vehicles based on edge computing. IEEE Transactions on Intelligent Transportation Systems.
  8. Gobezie, A., & Fufa, M. S. (2020). Machine learning and deep learning models for traffic flow prediction: A survey.
  9. Razali, N. A. M., Shamsaimon, N., Ishak, K. K., Ramli, S., Amran, M. F. M., & Sukardi, S. (2021). Gap, techniques and evaluation: traffic flow prediction using machine learning and deep learning. Journal of Big Data, 8(1), 1-25.
  10. Navarro-Espinoza, A., López-Bonilla, O. R., García-Guerrero, E. E., Tlelo-Cuautle, E., López-Mancilla, D., Hernández-Mejía, C., & Inzunza-González, E. (2022). Traffic flow prediction for smart traffic lights using machine learning algorithms. Technologies, 10(1), 5.
  11. Qi, T., Chen, L., Li, G., Li, Y., & Wang, C. (2023). FedAGCN: A traffic flow prediction framework based on federated learning and Asynchronous Graph Convolutional Network. Applied Soft Computing, 138, 110175.
  12. Djenouri, Y., Belhadi, A., Srivastava, G., & Lin, J. C. W. (2023). Hybrid graph convolution neural network and branch-and-bound optimization for traffic flow forecasting. Future Generation Computer Systems, 139, 100-108.
  13. Saleem, M., Abbas, S., Ghazal, T. M., Khan, M. A., Sahawneh, N., & Ahmad, M. (2022). Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egyptian Informatics Journal, 23(3), 417-426.
  14. Dai, F., Huang, P., Mo, Q., Xu, X., Bilal, M., & Song, H. (2022). ST-InNet: Deep Spatio-Temporal Inception Networks for Traffic Flow Prediction in Smart Cities. IEEE Transactions on Intelligent Transportation Systems, 23(10), 19782-19794.
  15. Hassan, M., Kanwal, A., Jarrah, M., Pradhan, M., Hussain, A., & Mago, B. (2022, February). Smart City Intelligent Traffic Control for Connected Road Junction Congestion Awareness with Deep Extreme Learning Machine. In 2022 International Conference on Business Analytics for Technology and Security (ICBATS) (pp. 1-4). IEEE.
  16. Vijayalakshmi, B., Ramar, K., Jhanjhi, N. Z., Verma, S., Kaliappan, M., Vijayalakshmi, K., ... & Ghosh, U. (2021). An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city. International Journal of Communication Systems, 34(3), e4609.
  17. Joseph, L. L., Goel, P., Jain, A., Rajyalakshmi, K., Gulati, K., & Singh, P. (2021, October). A novel hybrid deep learning algorithm for smart city traffic congestion predictions. In 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC) (pp. 561-565). IEEE
  18. Awan, F. M., Minerva, R., & Crespi, N. (2021). Using noise pollution data for traffic prediction in smart cities: experiments based on LSTM recurrent neural networks. IEEE Sensors Journal, 21(18), 20722-20729.
  19. Qaisar, S. M., Khan, S. I., Srinivasan, K., & Krichen, M. (2023). Arrhythmia classification using multirate processing metaheuristic optimization and variational mode decomposition. Journal of King Saud University-Computer and Information Sciences, 35(1), 26-37.
  20. Henry, A., Gautam, S., Khanna, S., Rabie, K., Shongwe, T., Bhattacharya, P., Sharma, B., & Chowdhury, S. (2023). Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System. Sensors, 23(2), 890.
  21. Wang, H., Zhang, C., & Wu, H. (2023). Shear Capacity Prediction Model of Deep Beam Based on New Hybrid Intelligent Algorithm. Buildings, 13(6), 1395.
  22. https://www.kaggle.com/datasets/arashnic/road-trafic-dataset?select=region_traffic.csv
Language: English
Page range: 44 - 61
Submitted on: Aug 20, 2023
Accepted on: Oct 21, 2023
Published on: Dec 15, 2023
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Sarah Hadi Shaheed, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.