Huang, X., Li, Z. and Ding, D.W., 2022. Finite-time attack detection for nonlinear complex cyber-physical networks under false data injection attacks. Journal of the Franklin Institute, 359(18), pp.10510-10524.
Chen, Y., Li, T., Long, Y. and Bai, W., 2023. Attacks Detection and Security Control for Cyber-Physical Systems under False Data Injection Attacks. Journal of the Franklin Institute.
Liu, X., Chang, P., Wu, Z., Jiang, M. and Sun, Q., 2022. Malicious data injection attacks risk mitigation strategy of cyber–physical power system based on hybrid measurements attack detection and risk propagation. International Journal of Electrical Power & Energy Systems, 142, p.108241.
Lu, K.D. and Wu, Z.G., 2022. Multi-objective false data injection attacks of cyber–physical power systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(9), pp.3924-3928.
Hu, Y., Zhu, P., Xun, P., Liu, B., Kang, W., Xiong, Y. and Shi, W., 2021. CPMTD: Cyber-physical moving target defense for hardening the security of power system against false data injected attack. Computers & Security, 111, p.102465.
Tian, J., Wang, B., Li, J. and Konstantinou, C., 2022. Datadriven false data injection attacks against cyber-physical power systems. Computers & Security, 121, p.102836.
Bhattar, P.L., Pindoriya, N.M. and Sharma, A., 2021. A combined survey on distribution system state estimation and false data injection in cyber-physical power distribution networks. IET Cyber-Physical Systems: Theory & Applications, 6(2), pp.41-62.
Habib, A.A., Hasan, M.K., Alkhayyat, A., Islam, S., Sharma, R. and Alkwai, L.M., 2023. False data injection attack in smart grid cyber physical system: Issues, challenges, and future direction. Computers and Electrical Engineering, 107, p.108638.
Li, H., Xia, Y., Ke, J., Lv, T., Zhang, H., Zhong, Z. and Zhang, J., 2023. False data injection attacks detection based on Laguerre function in nonlinear Cyber-Physical systems. Internet Technology Letters, 6(3), p.e399.
Qu, Z., Dong, Y., Qu, N., Li, H., Cui, M., Bo, X., Wu, Y. and Mugemanyi, S., 2021. False data injection attack detection in power systems based on cyber-physical attack genes. Frontiers in Energy Research, 9, p.644489.
Alamro, H., Mahmood, K., Aljameel, S.S., Yafoz, A., Alsini, R. and Mohamed, A., 2023. Modified Red Fox Optimizer with Deep Learning enabled False Data Injection Attack Detection. IEEE Access.
Vincent, E., Korki, M., Seyedmahmoudian, M., Stojcevski, A. and Mekhilef, S., 2023. Detection of false data injection attacks in cyber–physical systems using graph convolutional network. Electric Power Systems Research, 217, p.109118.
Hallaji, E., Razavi-Far, R., Wang, M., Saif, M. and Fardanesh, B., 2022. A stream learning approach for real-time identification of false data injection attacks in cyber-physical power systems. IEEE Transactions on Information Forensics and Security, 17, pp.3934-3945.
Cao, G., Gu, W., Lou, G., Sheng, W. and Liu, K., 2022. Distributed synchronous detection for false data injection attack in cyber-physical microgrids. International Journal of Electrical Power & Energy Systems, 137, p.107788.
Zhang, G., Li, J., Bamisile, O., Cai, D., Hu, W. and Huang, Q., 2021. Spatio-temporal correlation-based false data injection attack detection using deep convolutional neural network. IEEE Transactions on Smart Grid, 13(1), pp.750-761.
Ding, Y., Ma, K., Pu, T., Wang, X., Li, R. and Zhang, D., 2021. A deep learning-based classification scheme for false data injection attack detection in power system. Electronics, 10(12), p.1459.
Xue, W. and Wu, T., 2020. Active learning-based XGBoost for cyber physical system against generic AC false data injection attacks. IEEE Access, 8, pp.144575-144584.
Wang, J., Zhang, B. and Shu, L., 2023. Research on Non-Intrusive Load Recognition Method Based on Improved Equilibrium Optimizer and SVM Model. Electronics, 12(14), p.3138.
Mafarja, M., Thaher, T., Al-Betar, M.A., Too, J., Awadallah, M.A., Abu Doush, I. and Turabieh, H., 2023. Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning. Applied Intelligence, pp.1-43.
Karthikeyini, S., Vidhya, G., Vetriselvi, T. and Deepa, K., 2023. Heart Disease Prognosis Using DGRU with Logistic Chaos Honey Badger Optimization in IoMT Framework. Information Technology and Control, 52(2), pp.367-380.