Have a personal or library account? Click to login
Link Adaptation Strategy for Underwater Acoustic Sensor Networks: A Machine Learning Approach Cover

Link Adaptation Strategy for Underwater Acoustic Sensor Networks: A Machine Learning Approach

Open Access
|Oct 2023

References

  1. F. Qu, Z. Wang, L. Yang, and Z. Wu, ‘‘A journey toward modeling and resolving Doppler in underwater acoustic communications,’’ IEEE Commun. Mag., vol. 54, no. 2, pp. 49–55, Feb. 2016.
  2. M. Stojanovic and P. Beaujean, ‘‘Acoustic communication,’’ in Springer Handbook of Ocean Engineering, M. R. Dhanak and N. I. Xiros, Ed. New York, NY, USA: Springer, 2016, pp. 359–383.
  3. T. Melodia, H. Kulhandjian, and E. Demirors, ‘‘Advances in underwater acoustic networking,’’ in Mobile Ad-Hoc Networking: Cutting Edge Directions, 2nd ed. S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, Ed. Hoboken, NJ, USA: Wiley, 2013, pp. 504–854.
  4. M. Stojanovic and J. Preisig, ‘‘Underwater acoustic communication channels: Propagation models and statistical characterization,’’ IEEE Commun. Mag., vol. 47, no. 1, pp. 84–89, Jan. 2009.
  5. C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett, ‘‘Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing,’’ IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1708–1721, Mar. 2010.
  6. S.-U. Kim, H.-S. Cheon, S.-B. Seo, S.-M. Song, and S.-Y. Park, ‘‘A hexagon tessellation approach for the transmission energy efficiency in underwater wireless sensor networks,’’ J. Inf. Process. Syst., vol. 6, no. 1, pp. 53–66, Mar. 2010.
  7. M. Stojanovic, ‘‘on the design of underwater acoustic cellular systems,’’ in Proc. OCEANS, Aberdeen, U.K., Jun. 2007, pp. 1–6.
  8. B. Sirinivasan, ‘‘Capacity of underwater acoustic OFDM cellular networks,’’ M.S. thesis, Dept. Comput. Sci. Eng., Univ. California, Santa Barbara, CA, USA, 2008.
  9. I. Ahmad, Z. Kaleem, and K. H. Chang, ‘‘Block error rate and UE throughput performance evaluation using LLS and SLS in 3GPP LTE downlink,’’ in Proc. Korean Inst. Commun. Inf. Sci., Daegwallyeong-myeon, South Korea: Yongpyong Resort, Feb. 2013, pp. 512–516.
  10. C. Mehlfuhrer, J. C. Ikuno, S. Šhwarz, S. Schwarz, M. Wrulich, and M. Rupp, ‘‘The Vienna LTE simulators— Enabling reproducibility in wireless communications research,’’ EURASIP J. Adv. Signal Process., vol. 2011, no. 29, pp. 1–14, Jan. 2011.
  11. C. Mehlführe, M. Wrulich, J. C. Ikuno, D. Bosanska, and M. Rupp, ‘‘Simulating the long term evolution physical layer,’’ in Proc. Eur. Signal Process. Conf., Glasgow, U.K., Aug. 2009, pp. 1471–1478.
  12. W. Chen, I. Ahmad, and K. Chang, ‘‘Co-channel interference management using eICIC/FeICIC with coordinated scheduling for the coexistence of PS-LTE and LTE-R networks,’’ EURASIP J. Wireless Commun., vol. 2017, p. 34, Dec. 2017. [Online]. Available: https://jwcneurasipjournals.springeropen.com/articles/10.1186/s13638-017-0822-6
  13. R. B. Santos, W. C. Freitas, Jr., E. M. Stancanelli, and F. R. Cavalcanti, ‘‘Link-to-system level interface solutions in multistate channels for 3gpp lte wireless system,’’ in Proc. Simposio Brasileiro Telecommun., Sªo Pedro, Brazil, Dec. 2007, pp. 1–6.
  14. S.-U. Kim, H.-S. Cheon, S.-B. Seo, S.-M. Song, and S.-Y. Park, ‘‘A hexagon tessellation approach for the transmission energy efficiency in underwater wireless sensor networks,’’ J. Inf. Process. Syst., vol. 6, no. 1, pp. 53– 66, Mar. 2010, doi: 10.3745/JIPS.2010.6.1.053.
  15. M. Stojanovic, ‘‘On the design of underwater acoustic cellular systems,’’ in Proc. OCEANS, Aberdeen, U.K., Jun. 2007, pp. 1–6, doi: 10.1109/ OCEANSE.2007.4302226.
  16. B. Sirinivasan, ‘‘Capacity of underwater acoustic OFDM cellular networks,’’ M.S. Thesis, Univ. California, Santa Barbara, Santa Barbara, CA, USA, 2008, doi: 10.1109/OCEANSSYD.2010.5603911.
  17. I. Ahmad and K. Chang, ‘‘Effective SNR mapping and link adaptation strategy for next-generation underwater acoustic communications networks: A cross-layer approach,’’ IEEE Access, vol. 7, pp. 44150–44164,2019, doi: 10.1109/ACCESS.2019.2908018.
  18. Y. Wang, H. Zhang, Z. Sang, L. Xu, C. Cao, and T. A. Gulliver, ‘‘Modulation classification of underwater communication with deep learning network,’’ Comput. Intell. Neurosci., vol. 2019, pp. 1–12, Apr. 2019, doi: 10.1155/2019/8039632.
  19. Onedrive Link for Dataset. [Online]. Available: https://1drv.ms/u/s!AswxJeiLN4eNjxEgvdcXN06Pna4S?e=Nc7b6c and https://ieee-dataport.org/documents/taean-and-incheonmeasured-data, doi: 10.21227/4x41-7146.
  20. I. F. Akyildiz, D. Pompili, and T. Melodia, ‘‘Underwater acoustic sensor networks: Research challenges,’’ Ad Hoc Netw., vol. 5, no. 3, pp. 257–279, May 2005.
  21. R. Headrick and L. Freitag, ‘‘Growth of underwater communication technology in the U.S. Navy,’’ IEEE Commun. Mag., vol. 47, no. 1, pp. 80–82, Jan. 2009.
  22. N. Li, J.-F. Martínez, J. M. M. Chaus, and M. Eckert, ‘‘A survey on underwater acoustic sensor network routing protocols,’’ Sensors, vol. 16, no. 3, p. 414, Mar. 2016.
  23. P. C. Etter, ‘‘Underwater Acoustic Modeling and Simulation, 4th ed. Boca Raton, FL, USA: CRC Press, 2013.
  24. Y. Noh et al., ‘‘DOTS: A propagation delay-aware opportunistic MAC protocol for mobile underwater networks,’’ IEEE Trans. Mobile Comput., vol. 13, no. 4, pp. 766–782, Apr. 2014.
  25. T. Ebihara and K. Mizutani, ‘‘Underwater acoustic communication with an orthogonal signal division multiplexing scheme in doubly spread channels,’’ IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 47–58, Jan. 2014.
  26. K. Chen, M. Ma, E. Cheng, F. Yuan, and W. Su, ‘‘A survey on MAC protocols for underwater wireless sensor networks,’’ IEEE Commun. Surv. Tuts., vol. 16, no. 3, pp. 1433–1447, Mar. 2014.
  27. M. Hayajneh, I. Khalil, and Y. Gadallah, ‘‘An OFDMA-based MAC protocol for under water acoustic wireless sensor networks,’’ in Proc. Int. Conf. Wireless Commun. Mobile Comput., Connecting World Wirelessly, Leipzig, Germany, Jun. 2009, pp. 810–814.
  28. I. M. Khalil, Y. Gadallah, M. Hayajneh, and A. Khreishah, ‘‘An adaptive OFDMA-based MAC protocol for underwater acoustic wireless sensor networks,’’ Sensors, vol. 12, no. 7, pp. 8782–8805, Jun. 2012.
  29. J.-W. Lee and H.-S. Cho, ‘‘Cascading multi-hop reservation and transmission in underwater acoustic sensor networks,’’ Sensors, vol. 14, no. 10, pp. 18390–18409, Oct. 2014.
  30. H.-H. Ng, W.-S. Soh, and M. Motani, ‘‘MACA-U: A media access protocol for underwater acoustic networks,’’ in Proc. IEEE GLOBECOM, New Orleans, LO, USA, Dec. 2008, pp. 1–5.
  31. P. Karn, ‘‘MACA-a new channel access method for packet radio,’’ in Proc. ARRL/CRRL Amateur Radio Comput. Netw. Conf., London, ON, Canada, Sep. 1990, pp. 134–140.
  32. J.-P. Kim, J.-W. Lee, Y.-S. Jang, K. Son, and H.-S. Cho, ‘‘A CDMA-based MAC protocol in tree-topology for underwater acoustic sensor networks,’’ in Proc. Int. Conf. Adv. Inf. Netw. Appl. Workshops, Bradford, U.K., May 2009, pp. 1166–1171.
  33. D. Pompili, T. Melodia, and I. F. Akyildiz, ‘‘A CDMA-based medium access control for underwater acoustic sensor networks,’’ IEEE Trans. Wireless Commun., vol. 8, no. 4, pp. 1899–1909, Apr. 2009.
  34. P. Casari, B. Tomasi, and M. Zorzi, ‘‘A comparison between the Tone-Lohi and Slotted FAMA MAC protocols for underwater networks,’’ in Proc. IEEE OCEANS, Quebec City, QC, Canada, Sep. 2008, pp. 1–8.
  35. R. Santos et al., ‘‘Scheduling real-time traffic in underwater acoustic wireless sensor networks,’’ in Ubiquitous Computing and Ambient Intelligence. Gran Canaria, Spain: Springer, Nov. 2016, pp. 150–162.
  36. H. Yan, Z. J. Shi, and J.-H. Cui, ‘‘DBR: Depth-based routing for underwater sensor networks,’’ in Proc. Int. Conf. Res. Netw., Singapore, vol. 86, May 2008, pp. 72.
  37. S. Gopi, G. Kannan, U. B. Desai, and S. N. Merchant, ‘‘Energy optimized path unaware layered routing protocol for underwater sensor networks,’’ in Proc. IEEE Global Telecommun., New Orleans, LO, USA, Dec. 2008, pp. 1–6.
  38. N. Z. Zenia, M. Aseeri, M. R. Ahmed, Z. I. Chowdhury, and M. S. Kaiser, ‘‘Energy-efficiency and reliability in MAC and routing protocols for underwater wireless sensor network: A survey,’’ J. Netw. Comput. Appl., vol. 71, pp. 72–85, Aug. 2016.
  39. X. Zhong, F. Chen, J. Fan, Q. Guan, F. Ji, and H. Yu, ‘‘Throughput analysis on 3-dimensional underwater acoustic network with one-hop mobile relay,’’ Sensors, vol. 18, no. 2, p. 252, Jan. 2018.
  40. A. Khan et al., ‘‘Routing protocols for underwater wireless sensor networks: Taxonomy, research challenges, routing strategies and future directions,’’ Sensors, vol. 18, no. 5, p. 1619, May 2018.
  41. F. Ahmed, Z. Wadud, N. Javaid, N. Alrajeh, M. S, Alabed, and U. Qasim, ‘‘Mobile sinks assisted geographic and opportunistic routing based interference avoidance for underwater wireless sensor network,’’ Sensors, vol. 18, no. 4, p. 1062, Apr. 2
Language: English
Page range: 56 - 64
Submitted on: Mar 20, 2023
Accepted on: Jul 10, 2023
Published on: Oct 14, 2023
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2023 Muhmmad Ali, Ihab M. Ali Almaameri, Abdul Malik, Fahim Khan, Muhammad Khalid Rabbani, Alamgir, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.