References
- K. Nugroho, E. Noersasongko, Purwanto, Muljono, and H. A. Santoso, ‘‘Javanese gender speech recognition using deep learning and singular value decomposition,’’ in Proc. Int. Seminar Appl. Technol. Inf. Commun. (iSemantic). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, 2019, pp. 251–254.
- Z. Han and J. Wang, ‘‘Speech emotion recognition based on deep learning and kernel nonlinear PSVM,’’ in Proc. 31st Chin. Control Decis. Conf. (CCDC). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, 2019, pp. 1426–1430.
- A. Sarkar, S. Dasgupta, S. K. Naskar, and S. Bandyopadhyay, ‘‘Says who? Deep learning models for joint speech recognition, segmentation and diarization,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Apr. 2018, pp. 5229–5233.
- M. Satsangi, M. Yadav, and P. S. Sudhish, ‘‘License plate recognition: A comparative study on thresholding, OCR and machine learning approaches,’’ in Proc. Int. Conf. Bioinf. Syst. Biol. (BSB). Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Oct. 2018, pp. 58–63.
- V. D’Orazio, J. Honaker, R. Prasady, and M. Shoemate, ‘‘Modeling and forecasting armed conflict: AutoML with human-guided machine learning,’’ in Proc. IEEE Int. Conf. Big Data. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, Dec. 2019, pp. 4714–4723.
- X. Zhou, M. Sun, G. Y. Li, and B. F. Juang, ‘‘Intelligent wireless communications enabled by cognitive radio and machine learning,’’ China Commun., vol. 15, no. 12, pp. 16–48, 2018. [Online]. Available: https://ieeexplore-ieeeorg.ezproxy.uniten.edu.my/document/8594714
- D. Côté, ‘‘Using machine learning in communication networks [invited],’’
- J. Opt. Commun. Netw., vol. 10, no. 10, pp. D100–D109, Oct. 2018.
- Z. Mammeri, ‘‘Reinforcement learning based routing in networks: Review and classification of approaches,’’ IEEEAccess, vol. 7, pp. 55916–55950, 2019.
- D. J. Miller, Z. Xiang, and G. Kesidis, ‘‘Adversarial learning targeting deep neural network classification: A comprehensive review of defenses against attacks,’’ Proc. IEEE, vol. 108, no. 3, pp. 402–433, Mar. 2020.
- S. Otoum, B. Kantarci, and H. T. Mouftah, ‘‘On the feasibility of deep learning in sensor network intrusion detection,’’ IEEE Netw. Lett., vol. 1, no. 2, pp. 68–71, Jun. 2019.
- A. Shrestha and A. Mahmood, ‘‘Review of deep learning algorithms and architectures,’’ IEEE Access, vol. 7, pp. 53040–53065, 2019.
- C. Zhang, P. Patras, and H. Haddadi, ‘‘Deep learning in mobile and wireless networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2224–2287, 3rd Quart., 2019.
- M. Usama, J. Qadir, A. Raza, H. Arif, K.-L.-A. Yau, YElkhatib, A. Hussain, and A. Al-Fuqaha, ‘‘Unsupervised machine learning for networking: Techniques, applications and research challenges,’’ IEEE Access, vol. 7, pp. 65579– 65615, 2019.
- N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and
- D. I. Kim, ‘‘Applications of deep reinforcement learning in communications and networking: A survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3133–3174, 2019.