References
- Liu, L., Toung, J.M., Jassowicz, A.F., Vijayaraghavan, R., Kang, H., Zhang, R., Kruglyak, K.M., Huang, H.J., Hinoue, T., Shen, H. and Salathia, N.S., 2018. Targeted methylation sequencing of plasma cell-free DNA for cancer detection and classification. Annals of Oncology, 29(6), pp.1445-1453.
- Valle, L., Vilar, E., Tavtigian, S.V. and Stoffel, E.M., 2019. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. The Journal of pathology, 247(5), pp.574-588.
- Lichtenstern, C.R., Ngu, R.K., Shalapour, S. and Karin, M., 2020. Immunotherapy, inflammation and colorectal cancer. Cells, 9(3), p.618.
- Joanito, I., Wirapati, P., Zhao, N., Nawaz, Z., Yeo, G., Lee, F., Eng, C.L., Macalinao, D.C., Kahraman, M., Srinivasan, H. and Lakshmanan, V., 2022. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nature genetics, 54(7), pp.963-975.
- Kather, J.N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.A., Gaiser, T., Marx, A., Valous, N.A., Ferber, D. and Jansen, L., 2019. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS medicine, 16(1), p.e1002730.
- Pacal, I., Karaboga, D., Basturk, A., Akay, B. and Nalbantoglu, U., 2020. A comprehensive review of deep learning in colon cancer. Computers in Biology and Medicine, 126, p.104003.
- Sirinukunwattana, K., Domingo, E., Richman, S.D., Redmond, K.L., Blake, A., Verrill, C., Leedham, S.J., Chatzipli, A., Hardy, C., Whalley, C.M. and Wu, C.H., 2021. Image-based consensus molecular subtype (imCMS) classification of colorectal cancer using deep learning. Gut, 70(3), pp.544-554.
- Kather, J.N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.A., Gaiser, T., Marx, A., Valous, N.A., Ferber, D. and Jansen, L., 2019. Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS medicine, 16(1), p.e1002730.
- Mitsala, A., Tsalikidis, C., Pitiakoudis, M., Simopoulos, C. and Tsaroucha, A.K., 2021. Artificial intelligence in colorectal cancer screening, diagnosis and treatment. A new era. Current Oncology, 28(3), pp.1581-1607.
- Ho, C., Zhao, Z., Chen, X.F., Sauer, J., Saraf, S.A., Jialdasani, R., Taghipour, K., Sathe, A., Khor, L.Y., Lim, K.H. and Leow, W.Q., 2022. A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer. Scientific Reports, 12(1), pp.1-9.
- Sarwinda, D., Paradisa, R.H., Bustamam, A. and Anggia, P., 2021. Deep learning in image classification using residual network (ResNet) variants for detection of colorectal cancer. Procedia Computer Science, 179, pp.423-431.
- Javed, S., Mahmood, A., Fraz, M.M., Koohbanani, N.A., Benes, K., Tsang, Y.W., Hewitt, K., Epstein, D., Snead, D. and Rajpoot, N., 2020. Cellular community detection for tissue phenotyping in colorectal cancer histology images. Medical image analysis, 63, p.101696.
- Masud, M., Sikder, N., Nahid, A.A., Bairagi, A.K. and AlZain, M.A., 2021. A machine learning approach to diagnosing lung and colon cancer using a deep learning-based classification framework. Sensors, 21(3), p.748.
- Lorenzovici, N., Dulf, E.H., Mocan, T. and Mocan, L., 2021. Artificial Intelligence in Colorectal Cancer Diagnosis Using Clinical Data: Non-Invasive Approach. Diagnostics, 11(3), p.514.
- Zhou, C., Jin, Y., Chen, Y., Huang, S., Huang, R., Wang, Y., Zhao, Y., Chen, Y., Guo, L. and Liao, J., 2021. Histopathology classification and localization of colorectal cancer using global labels by weakly supervised deep learning. Computerized Medical Imaging and Graphics, 88, p.101861.
- Tsai, M.J. and Tao, Y.H., 2021. Deep learning techniques for the classification of colorectal cancer tissue. Electronics, 10(14), p.1662.
- Alqudah, A.M. and Alqudah, A., 2022. Improving machine learning recognition of colorectal cancer using 3D GLCM applied to different color spaces. Multimedia Tools and Applications, 81(8), pp.10839-10860.
- Mulenga, M., Kareem, S.A., Sabri, A.Q.M., Seera, M., Govind, S., Samudi, C. and Mohamad, S.B., 2021. Feature extension of gut microbiome data for deep neural network-based colorectal cancer classification. IEEE Access, 9, pp.23565-23578.
- Yu, H., He, F. and Pan, Y., 2020. A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation. Multimedia Tools and Applications, 79(9), pp.5743-5765.
- Mujahid, M., Rustam, F., Álvarez, R., Luis Vidal Mazón, J., Díez, I.D.L.T. and Ashraf, I., 2022. Pneumonia Classification from X-ray Images with Inception-V3 and Convolutional Neural Network. Diagnostics, 12(5), p.1280.
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320.
- Rawa, M., 2022. Towards Avoiding Cascading Failures in Transmission Expansion Planning of Modern Active Power Systems Using Hybrid Snake-Sine Cosine Optimization Algorithm. Mathematics, 10(8), p.1323.
- Yang, X., Wang, W., Ma, J.L., Qiu, Y.L., Lu, K., Cao, D.S. and Wu, C.K., 2022. BioNet: a large-scale and heterogeneous biological network model for interaction prediction with graph convolution. Briefings in Bioinformatics, 23(1), p.bbab491.
- https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/download/
- K. Sirinukunwattana, D.R.J. Snead, N.M. Rajpoot, “A Stochastic Polygons Model for Glandular Structures in Colon Histology Images,” in IEEE Transactions on Medical Imaging, 2015 doi: 10.1109/TMI.2015.2433900
- Ragab, M. and Albukhari, A., 2022. Automated Artificial Intelligence Empowered Colorectal Cancer Detection and Classification Model. CMC-COMPUTERS MATERIALS & CONTINUA, 72(3), pp.5577-5591.