Have a personal or library account? Click to login
Modeling of Optimal Fully Connected Deep Neural Network based Sentiment Analysis on Social Networking Data Cover

Modeling of Optimal Fully Connected Deep Neural Network based Sentiment Analysis on Social Networking Data

By: Zaid Alsalami  
Open Access
|Dec 2022

References

  1. Agüero-Torales, M.M., Salas, J.I.A. and López-Herrera, A.G., 2021. Deep learning and multilingual sentiment analysis on social media data: An overview. Applied Soft Computing, p.107373.
  2. S.L. Lo, E. Cambria, R. Chiong, D. Cornforth, Multilingual sentiment analysis: from formal to informal and scarce resource languages, Artif. Intell. Rev. 48 (4) (2017) 499–527.
  3. D. Tang, B. Qin, T. Liu, Deep learning for sentiment analysis: successful approaches and future challenges, Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 5 (6) (2015) 292–303.
  4. P. Singhal, P. Bhattacharyya, Sentiment Analysis and Deep Learning: A Survey, Center for Indian Language Technology, Indian Institute of Technology, Bombay, 2016.
  5. D. Vilares, Compositional Language Processing for Multilingual Sentiment Analysis (Ph.D. thesis), Universidade da Coruña, 2017.
  6. B. Liu, Sentiment analysis and opinion mining, Synth. Lect. Human Lang. Technol. 5 (1) (2012) 1–167.
  7. S. Wang, C.D. Manning, Baselines and bigrams: Simple, good sentiment and topic classification, in: Proc. of the 50th Annual Meeting of the ACL: Short Papers, Vol. 2, ACL, 2012, pp. 90–94
  8. Y. Kim, Convolutional neural networks for sentence classification, in: Proc. of the 2014 Conf. on Empirical Methods in NLP, EMNLP, ACL, Doha, Qatar, 2014, pp. 1746–1751.
  9. L.M. Rojas-Barahona, Deep learning for sentiment analysis, Lang. Linguist. Compass 10 (12) (2016) 701–719.
  10. Abd El-Jawad, M.H., Hodhod, R. and Omar, Y.M., 2018, December. Sentiment analysis of social media networks using machine learning. In 2018 14th international computer engineering conference (ICENCO) (pp. 174-176). IEEE.
  11. Nemes, L. and Kiss, A., 2021. Social media sentiment analysis based on COVID-19. Journal of Information and Telecommunication, 5(1), pp.1-15.
  12. Yoo, S., Song, J. and Jeong, O., 2018. Social media contents based sentiment analysis and prediction system. Expert Systems with Applications, 105, pp.102-111.
  13. Vashishtha, S. and Susan, S., 2019. Fuzzy rule based unsupervised sentiment analysis from social media posts. Expert Systems with Applications, 138, p.112834.
  14. Asif, M., Ishtiaq, A., Ahmad, H., Aljuaid, H. and Shah, J., 2020. Sentiment analysis of extremism in social media from textual information. Telematics and Informatics, 48, p.101345.
  15. Rogers, A., Romanov, A., Rumshisky, A., Volkova, S., Gronas, M. and Gribov, A., 2018, August. RuSentiment: An enriched sentiment analysis dataset for social media in Russian. In Proceedings of the 27th international conference on computational linguistics (pp. 755-763).
  16. Jeong, B., Yoon, J. and Lee, J.M., 2019. Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis. International Journal of Information Management, 48, pp.280-290.
  17. Alessandro, C., Daniela, M., Michele, M., Andrea, T., Gianmarco, G., Massimo, S., Orazio, Z., Fabio, G. and Giuseppe, T., 2012. Glove port technique for transanal endoscopic microsurgery. International journal of surgical oncology, 2012.
  18. Bi, L., Hu, G., Raza, M.M., Kandel, Y., Leandro, L. and Mueller, D., 2020. A Gated Recurrent Units (GRU)-Based Model for Early Detection of Soybean Sudden Death Syndrome through Time-Series Satellite Imagery. Remote Sensing, 12(21), p.3621.
  19. Ramesh, S. and Vydeki, D., 2020. Recognition and classification of paddy leaf diseases using Optimized Deep Neural network with Jaya algorithm. Information processing in agriculture, 7(2), pp.249-260.
  20. Ewees, A.A., Al-qaness, M.A. and Abd Elaziz, M., 2021. Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times. Applied Mathematical Modelling, 94, pp.285-305.
  21. Abualigah, L., Shehab, M., Alshinwan, M. and Alabool, H., 2020. Salp swarm algorithm: a comprehensive survey. Neural Computing and Applications, 32(15), pp.11195-11215.
  22. Zhang J, Wang Z, Luo X (2018) Parameter estimation for soil water retention curve using the salp swarm algorithm. Water 10:815
Language: English
Page range: 114 - 132
Submitted on: Jul 29, 2022
Accepted on: Oct 21, 2022
Published on: Dec 15, 2022
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Zaid Alsalami, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.