References
- Agüero-Torales, M.M., Salas, J.I.A. and López-Herrera, A.G., 2021. Deep learning and multilingual sentiment analysis on social media data: An overview. Applied Soft Computing, p.107373.
- S.L. Lo, E. Cambria, R. Chiong, D. Cornforth, Multilingual sentiment analysis: from formal to informal and scarce resource languages, Artif. Intell. Rev. 48 (4) (2017) 499–527.
- D. Tang, B. Qin, T. Liu, Deep learning for sentiment analysis: successful approaches and future challenges, Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 5 (6) (2015) 292–303.
- P. Singhal, P. Bhattacharyya, Sentiment Analysis and Deep Learning: A Survey, Center for Indian Language Technology, Indian Institute of Technology, Bombay, 2016.
- D. Vilares, Compositional Language Processing for Multilingual Sentiment Analysis (Ph.D. thesis), Universidade da Coruña, 2017.
- B. Liu, Sentiment analysis and opinion mining, Synth. Lect. Human Lang. Technol. 5 (1) (2012) 1–167.
- S. Wang, C.D. Manning, Baselines and bigrams: Simple, good sentiment and topic classification, in: Proc. of the 50th Annual Meeting of the ACL: Short Papers, Vol. 2, ACL, 2012, pp. 90–94
- Y. Kim, Convolutional neural networks for sentence classification, in: Proc. of the 2014 Conf. on Empirical Methods in NLP, EMNLP, ACL, Doha, Qatar, 2014, pp. 1746–1751.
- L.M. Rojas-Barahona, Deep learning for sentiment analysis, Lang. Linguist. Compass 10 (12) (2016) 701–719.
- Abd El-Jawad, M.H., Hodhod, R. and Omar, Y.M., 2018, December. Sentiment analysis of social media networks using machine learning. In 2018 14th international computer engineering conference (ICENCO) (pp. 174-176). IEEE.
- Nemes, L. and Kiss, A., 2021. Social media sentiment analysis based on COVID-19. Journal of Information and Telecommunication, 5(1), pp.1-15.
- Yoo, S., Song, J. and Jeong, O., 2018. Social media contents based sentiment analysis and prediction system. Expert Systems with Applications, 105, pp.102-111.
- Vashishtha, S. and Susan, S., 2019. Fuzzy rule based unsupervised sentiment analysis from social media posts. Expert Systems with Applications, 138, p.112834.
- Asif, M., Ishtiaq, A., Ahmad, H., Aljuaid, H. and Shah, J., 2020. Sentiment analysis of extremism in social media from textual information. Telematics and Informatics, 48, p.101345.
- Rogers, A., Romanov, A., Rumshisky, A., Volkova, S., Gronas, M. and Gribov, A., 2018, August. RuSentiment: An enriched sentiment analysis dataset for social media in Russian. In Proceedings of the 27th international conference on computational linguistics (pp. 755-763).
- Jeong, B., Yoon, J. and Lee, J.M., 2019. Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis. International Journal of Information Management, 48, pp.280-290.
- Alessandro, C., Daniela, M., Michele, M., Andrea, T., Gianmarco, G., Massimo, S., Orazio, Z., Fabio, G. and Giuseppe, T., 2012. Glove port technique for transanal endoscopic microsurgery. International journal of surgical oncology, 2012.
- Bi, L., Hu, G., Raza, M.M., Kandel, Y., Leandro, L. and Mueller, D., 2020. A Gated Recurrent Units (GRU)-Based Model for Early Detection of Soybean Sudden Death Syndrome through Time-Series Satellite Imagery. Remote Sensing, 12(21), p.3621.
- Ramesh, S. and Vydeki, D., 2020. Recognition and classification of paddy leaf diseases using Optimized Deep Neural network with Jaya algorithm. Information processing in agriculture, 7(2), pp.249-260.
- Ewees, A.A., Al-qaness, M.A. and Abd Elaziz, M., 2021. Enhanced salp swarm algorithm based on firefly algorithm for unrelated parallel machine scheduling with setup times. Applied Mathematical Modelling, 94, pp.285-305.
- Abualigah, L., Shehab, M., Alshinwan, M. and Alabool, H., 2020. Salp swarm algorithm: a comprehensive survey. Neural Computing and Applications, 32(15), pp.11195-11215.
- Zhang J, Wang Z, Luo X (2018) Parameter estimation for soil water retention curve using the salp swarm algorithm. Water 10:815