References
- Suhaimi, N.S., Mountstephens, J. and Teo, J., 2020. EEG-based emotion recognition: A state-of-the-art review of current trends and opportunities. Computational intelligence and neuroscience, 2020.
- Mai, N.D., Lee, B.G. and Chung, W.Y., 2021. Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device. Sensors, 21(15), p.5135.
- Ngai, W.K., Xie, H., Zou, D. and Chou, K.L., 2022. Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources. Information Fusion, 77, pp.107-117.
- Kamble, K.S. and Sengupta, J., 2021. Ensemble machine learning-based affective computing for emotion recognition using dual-decomposed EEG signals. IEEE Sensors Journal, 22(3), pp.2496-2507.
- Gao, Q., Yang, Y., Kang, Q., Tian, Z. and Song, Y., 2022. EEG-based emotion recognition with feature fusion networks. International Journal of Machine Learning and Cybernetics, 13(2), pp.421-429.
- Islam, M.R., Islam, M.M., Rahman, M.M., Mondal, C., Singha, S.K., Ahmad, M., Awal, A., Islam, M.S. and Moni, M.A., 2021. EEG channel correlation based model for emotion recognition. Computers in Biology and Medicine, 136, p.104757.
- Tao, W., Li, C., Song, R., Cheng, J., Liu, Y., Wan, F. and Chen, X., 2020. EEG-based emotion recognition via channel-wise attention and self attention. IEEE Transactions on Affective Computing.
- Ramzan, M. and Dawn, S., 2021. Fused cnn-lstm deep learning emotion recognition model using electroencephalography signals. International Journal of Neuroscience, pp.1-11.
- Zhang, J., Yin, Z., Chen, P. and Nichele, S., 2020. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion, 59, pp.103-126.
- Ari, B., Siddique, K., Alçin, Ö.F., Aslan, M., Şengür, A. and Mehmood, R.M., 2022. Wavelet ELM-AE Based Data Augmentation and Deep Learning for Efficient Emotion Recognition Using EEG Recordings. IEEE Access, 10, pp.72171-72181.
- Ashokkumar, S.R., Anupallavi, S., MohanBabu, G., Premkumar, M. and Jeevanantham, V., 2022. Emotion identification by dynamic entropy and ensemble learning from electroencephalogram signals. International Journal of Imaging Systems and Technology, 32(1), pp.402-413.
- Topic, A. and Russo, M., 2021. Emotion recognition based on EEG feature maps through deep learning network. Engineering Science and Technology, an International Journal, 24(6), pp.1442-1454.
- Choi, D.Y., Kim, D.H. and Song, B.C., 2020. Multimodal attention network for continuous-time emotion recognition using video and EEG signals. IEEE Access, 8, pp.203814-203826.
- Gu, X., Cai, W., Gao, M., Jiang, Y., Ning, X. and Qian, P., 2022. Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition. IEEE Transactions on Computational Social Systems.
- Subasi, A., Tuncer, T., Dogan, S., Tanko, D. and Sakoglu, U., 2021. EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier. Biomedical Signal Processing and Control, 68, p.102648.
- Liu, Y., Ding, Y., Li, C., Cheng, J., Song, R., Wan, F. and Chen, X., 2020. Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network. Computers in Biology and Medicine, 123, p.103927.
- Cui, H., Liu, A., Zhang, X., Chen, X., Wang, K. and Chen, X., 2020. EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network. Knowledge-Based Systems, 205, p.106243.
- Algarni, M., Saeed, F., Al-Hadhrami, T., Ghabban, F. and Al-Sarem, M., 2022. Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM). Sensors, 22(8), p.2976.
- Meng, X.B., Gao, X.Z., Lu, L., Liu, Y. and Zhang, H., 2016. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 28(4), pp.673-687.
- Ma, X., Mu, Y., Zhang, Y., Zang, C., Li, S., Jiang, X. and Cui, M., 2022. Multi-objective microgrid optimal dispatching based on improved bird swarm algorithm. Global Energy Interconnection, 5(2), pp.154-167.
- Yang, D., Liu, Z. and Zhou, J., 2014. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Communications in Nonlinear Science and Numerical Simulation, 19(4), pp.1229-1246.
- Jeong, M.H., Lee, T.Y., Jeon, S.B. and Youm, M., 2021. Highway speed prediction using gated recurrent unit neural networks. Applied Sciences, 11(7), p.3059.
- Saadna, Y., Boudhir, A.A. and Ben Ahmed, M., 2022. An analysis of ResNet50 model and RMSprop optimizer for education platform using an intelligent chatbot system. In Networking, Intelligent Systems and Security (pp. 577-590). Springer, Singapore.
- Thammasan, N.; Moriyama, K.; Fukui, K.-I.; Numao, M. Familiarity effects in EEG-based emotion recognition. Brain Inform. 2016, 4, 39–50.