Have a personal or library account? Click to login
Enhanced Bird Swarm Algorithm with Deep Learning based Electroencephalography Signal Analysis for Emotion Recognition Cover

Enhanced Bird Swarm Algorithm with Deep Learning based Electroencephalography Signal Analysis for Emotion Recognition

Open Access
|Dec 2022

References

  1. Suhaimi, N.S., Mountstephens, J. and Teo, J., 2020. EEG-based emotion recognition: A state-of-the-art review of current trends and opportunities. Computational intelligence and neuroscience, 2020.
  2. Mai, N.D., Lee, B.G. and Chung, W.Y., 2021. Affective Computing on Machine Learning-Based Emotion Recognition Using a Self-Made EEG Device. Sensors, 21(15), p.5135.
  3. Ngai, W.K., Xie, H., Zou, D. and Chou, K.L., 2022. Emotion recognition based on convolutional neural networks and heterogeneous bio-signal data sources. Information Fusion, 77, pp.107-117.
  4. Kamble, K.S. and Sengupta, J., 2021. Ensemble machine learning-based affective computing for emotion recognition using dual-decomposed EEG signals. IEEE Sensors Journal, 22(3), pp.2496-2507.
  5. Gao, Q., Yang, Y., Kang, Q., Tian, Z. and Song, Y., 2022. EEG-based emotion recognition with feature fusion networks. International Journal of Machine Learning and Cybernetics, 13(2), pp.421-429.
  6. Islam, M.R., Islam, M.M., Rahman, M.M., Mondal, C., Singha, S.K., Ahmad, M., Awal, A., Islam, M.S. and Moni, M.A., 2021. EEG channel correlation based model for emotion recognition. Computers in Biology and Medicine, 136, p.104757.
  7. Tao, W., Li, C., Song, R., Cheng, J., Liu, Y., Wan, F. and Chen, X., 2020. EEG-based emotion recognition via channel-wise attention and self attention. IEEE Transactions on Affective Computing.
  8. Ramzan, M. and Dawn, S., 2021. Fused cnn-lstm deep learning emotion recognition model using electroencephalography signals. International Journal of Neuroscience, pp.1-11.
  9. Zhang, J., Yin, Z., Chen, P. and Nichele, S., 2020. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion, 59, pp.103-126.
  10. Ari, B., Siddique, K., Alçin, Ö.F., Aslan, M., Şengür, A. and Mehmood, R.M., 2022. Wavelet ELM-AE Based Data Augmentation and Deep Learning for Efficient Emotion Recognition Using EEG Recordings. IEEE Access, 10, pp.72171-72181.
  11. Ashokkumar, S.R., Anupallavi, S., MohanBabu, G., Premkumar, M. and Jeevanantham, V., 2022. Emotion identification by dynamic entropy and ensemble learning from electroencephalogram signals. International Journal of Imaging Systems and Technology, 32(1), pp.402-413.
  12. Topic, A. and Russo, M., 2021. Emotion recognition based on EEG feature maps through deep learning network. Engineering Science and Technology, an International Journal, 24(6), pp.1442-1454.
  13. Choi, D.Y., Kim, D.H. and Song, B.C., 2020. Multimodal attention network for continuous-time emotion recognition using video and EEG signals. IEEE Access, 8, pp.203814-203826.
  14. Gu, X., Cai, W., Gao, M., Jiang, Y., Ning, X. and Qian, P., 2022. Multi-source domain transfer discriminative dictionary learning modeling for electroencephalogram-based emotion recognition. IEEE Transactions on Computational Social Systems.
  15. Subasi, A., Tuncer, T., Dogan, S., Tanko, D. and Sakoglu, U., 2021. EEG-based emotion recognition using tunable Q wavelet transform and rotation forest ensemble classifier. Biomedical Signal Processing and Control, 68, p.102648.
  16. Liu, Y., Ding, Y., Li, C., Cheng, J., Song, R., Wan, F. and Chen, X., 2020. Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network. Computers in Biology and Medicine, 123, p.103927.
  17. Cui, H., Liu, A., Zhang, X., Chen, X., Wang, K. and Chen, X., 2020. EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network. Knowledge-Based Systems, 205, p.106243.
  18. Algarni, M., Saeed, F., Al-Hadhrami, T., Ghabban, F. and Al-Sarem, M., 2022. Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM). Sensors, 22(8), p.2976.
  19. Meng, X.B., Gao, X.Z., Lu, L., Liu, Y. and Zhang, H., 2016. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. Journal of Experimental & Theoretical Artificial Intelligence, 28(4), pp.673-687.
  20. Ma, X., Mu, Y., Zhang, Y., Zang, C., Li, S., Jiang, X. and Cui, M., 2022. Multi-objective microgrid optimal dispatching based on improved bird swarm algorithm. Global Energy Interconnection, 5(2), pp.154-167.
  21. Yang, D., Liu, Z. and Zhou, J., 2014. Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Communications in Nonlinear Science and Numerical Simulation, 19(4), pp.1229-1246.
  22. Jeong, M.H., Lee, T.Y., Jeon, S.B. and Youm, M., 2021. Highway speed prediction using gated recurrent unit neural networks. Applied Sciences, 11(7), p.3059.
  23. Saadna, Y., Boudhir, A.A. and Ben Ahmed, M., 2022. An analysis of ResNet50 model and RMSprop optimizer for education platform using an intelligent chatbot system. In Networking, Intelligent Systems and Security (pp. 577-590). Springer, Singapore.
  24. Thammasan, N.; Moriyama, K.; Fukui, K.-I.; Numao, M. Familiarity effects in EEG-based emotion recognition. Brain Inform. 2016, 4, 39–50.
Language: English
Page range: 33 - 52
Submitted on: Jul 15, 2022
Accepted on: Sep 22, 2022
Published on: Dec 15, 2022
Published by: Future Sciences For Digital Publishing
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Mohammed H. Al-Farouni, published by Future Sciences For Digital Publishing
This work is licensed under the Creative Commons Attribution 4.0 License.